LA BIODIVERSIDAD EN
PUEBLA
ESTUDIO DE ESTADO
LA BIODIVERSIDAD EN
PUEBLA
ESTUDIO DE ESTADO

México, 2011
MENSAJE DEL GOBERNADOR

Puebla de Zaragoza, junio de 2011.

El cambio climático constituye uno de los mayores retos de nuestro tiempo.

La supervivencia de nuestra especie depende de la capacidad que tengamos de modificar el modelo de desarrollo para crecer en armonía con nuestro entorno ambiental.

México es el segundo país con mayor número de ecosistemas y el cuarto en número de especies. Ocupa los primeros lugares del mundo en cuanto a Reservas de la Biosfera con reconocimiento de la UNESCO.

Puebla, aporta el 15% de la biodiversidad mexicana. Somos el cuarto estado con mayor riqueza natural, lo cual nos impone una enorme responsabilidad a nivel nacional y mundial.

Por ello, es un honor y motivo de orgullo para mí, presentar esta obra, titulada “La Biodiversidad en Puebla: Estudio de Estado”, sin duda, el compendio de información más completo y actualizado sobre la diversidad biológica de la entidad.

Mi reconocimiento y felicitación a la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, a los expertos y especialistas nacionales y extranjeros, así como a las autoridades ambientales estatales.

Estoy seguro de que el presente estudio marcará un parteaguas en el conocimiento y diagnóstico de la biodiversidad de nuestro estado, al tiempo que sentará las bases para el diseño de las acciones y estrategias de conservación y aprovechamiento racional y sostenido de nuestra biodiversidad.

Recordemos que los recursos naturales de Puebla no son una herencia de nuestros padres que podamos dilapidar sino el patrimonio de nuestros hijos, que debemos cuidar y preservar.

Rafael Moreno Valle
Gobernador del Estado de Puebla
El libro “La Biodiversidad en Puebla: Estudio de Estado” representa un progreso notable para la difusión del conocimiento del patrimonio natural del Estado y para contribuir a reforzar la conciencia de la sociedad poblana sobre la trascendencia que tiene asegurar la conservación y el uso sustentable de su excepcional biodiversidad.

Esta publicación es indudablemente, una valiosa fuente de información actualizada y confiable acerca de la situación actual del estado de la biodiversidad en el Estado de Puebla, para quienes tienen que tomar decisiones acerca de la conservación y el uso sustentable y la restauración de los ecosistemas del Estado, así como para quienes desde la sociedad civil están seriamente interesados en estos temas. Esta obra nos permite conocer y entender los procesos de cambio y modificación de los ecosistemas, e identifica las áreas de oportunidad para realizar acción en pro del cuidado de los ecosistemas y los puntos de atención sobre los cuales debemos poner atención para acrecentar el conocimiento y asegurar la conservación del capital natural del Estado.

Este Estudio de Estado será una herramienta básica para autoridades, académicos, comunidades indígenas y locales, así como la sociedad en general, con la cual podrán sustentar de mejor manera la toma de decisiones, el diseño de políticas y acciones de uso adecuadas y sustentables, en beneficio del desarrollo integral de la sociedad de la entidad.

Ha sido un privilegio para CONABIO colaborar con las autoridades ambientales del Gobierno del Estado, quienes tuvieron el liderazgo de este esfuerzo y asegurarán la participación nutrida de los distintos sectores de la sociedad poblana. Reconozco el apoyo y dedicación de los 17 coordinadores y 164 autores pertenecientes a más de 22 instituciones, especialmente a la Benemérita Universidad de Puebla, El Colegio de Posgraduados, La Universidad de las Américas y La Universidad Iberoamericana, cuyos académicos colaboraron de forma entusiasta y comprometida, en la compilación y revisión técnica y científica de las distintas secciones que constituyen este estudio de estado.

Por otro lado, agradezco el apoyo de la Agencia Española de Cooperación Internacional para el Desarrollo (AECID) a través del Proyecto de Elaboración de Estrategias Estatales de Biodiversidad para los estados de Chiapas, Puebla y Veracruz, que ha apoyado la publicación de esta obra y la formulación de la Estrategia que actualmente se está elaborando.
Es importante hacer notar que esta obra ya está siendo utilizada como base para la elaboración de la Estrategia Estatal, que se encuentra también muy avanzada y cuyo objetivo fundamental es identificar las acciones necesarias para detener el deterioro del capital natural, usarlo de manera sustentable y mantener los servicios que los ecosistemas proveen para beneficio de la sociedad poblana. Con estos avances el Estado de Puebla enriquece de manera significativa los logros de México ante el Convenio sobre Diversidad Biológica (CBD).

Exhorto a todos los participantes de este Estudio de Estado a continuar participando con el mismo entusiasmo y compromiso en la elaboración y desde luego, en la pronta y efectiva implementación de la Estrategia Estatal para la Conservación y Uso Sustentable de la Biodiversidad de Puebla.

Estoy seguro que tanto las autoridades, como la academia y la sociedad poblana continuarán con las tareas de ampliar el conocimiento de la biodiversidad, identificar y registrar los cambios que experimenta y apoyar la difusión de esta obra.

Finalmente, tengo la confianza que los procesos y sinergias puestos en marcha a partir de la elaboración de este estudio y la estrategia subsecuente, promuevan que en un futuro no lejano se pueda constituir una Comisión Estatal de Biodiversidad, a semejanza de CONABIO, con la misión de producir inteligencia en materia de biodiversidad que apoye la toma de decisiones del gobierno estatal, los gobiernos municipales y la sociedad poblana.

Dr. José Sarukhán Kermez
Coordinador Nacional
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)
CONTENIDO

PRESENTACIÓN

INTRODUCCIÓN

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiversidad</td>
<td>15</td>
</tr>
<tr>
<td>Importancia de la biodiversidad</td>
<td>15</td>
</tr>
<tr>
<td>México, país megadiverso</td>
<td>16</td>
</tr>
<tr>
<td>El convenio de diversidad biológica (CBD) de las Naciones Unidas</td>
<td>16</td>
</tr>
<tr>
<td>La evaluación de los ecosistemas del milenio y la tercera perspectiva global sobre biodiversidad</td>
<td>17</td>
</tr>
<tr>
<td>México y el convenio de diversidad biológica</td>
<td>18</td>
</tr>
<tr>
<td>La instrumentación de la estrategia nacional de biodiversidad: Las estrategias estatales de biodiversidad</td>
<td>19</td>
</tr>
<tr>
<td>La estrategia estatal para la conservación y uso sustentable de la biodiversidad del estado de Puebla</td>
<td>20</td>
</tr>
</tbody>
</table>

CAPÍTULO 1 • MEDIO FÍSICO

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción</td>
<td>27</td>
</tr>
<tr>
<td>Superficie y relieve</td>
<td>27</td>
</tr>
<tr>
<td>Provincias fisiográficas del estado de Puebla y sus subdivisiones</td>
<td>28</td>
</tr>
<tr>
<td>Clima</td>
<td>31</td>
</tr>
<tr>
<td>Vientos</td>
<td>31</td>
</tr>
<tr>
<td>Temperatura</td>
<td>31</td>
</tr>
<tr>
<td>Precipitación</td>
<td>31</td>
</tr>
<tr>
<td>Recursos hídricos</td>
<td>32</td>
</tr>
<tr>
<td>Regiones hidrológicas</td>
<td>32</td>
</tr>
<tr>
<td>Hidrología subterránea</td>
<td>32</td>
</tr>
<tr>
<td>Zonas de veda</td>
<td>37</td>
</tr>
<tr>
<td>Suelos</td>
<td>38</td>
</tr>
<tr>
<td>Conclusión</td>
<td>40</td>
</tr>
<tr>
<td>Estudio de caso 1.1 – Región socioeconómica II Teziutlán, Puebla</td>
<td>41</td>
</tr>
</tbody>
</table>

CAPÍTULO 2 • MEDIO SOCIOECONÓMICO

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción</td>
<td>47</td>
</tr>
<tr>
<td>Sociedad y política</td>
<td>47</td>
</tr>
<tr>
<td>Organización política y gobierno</td>
<td>48</td>
</tr>
<tr>
<td>Geografía de Puebla y división territorial</td>
<td>48</td>
</tr>
<tr>
<td>Población</td>
<td>49</td>
</tr>
<tr>
<td>Economía</td>
<td>57</td>
</tr>
<tr>
<td>Aportaciones al PIB estatal por sector de la economía</td>
<td>58</td>
</tr>
<tr>
<td>Población ocupada por sector e ingresos obtenidos</td>
<td>58</td>
</tr>
<tr>
<td>Principales sectores, productos y servicios</td>
<td>59</td>
</tr>
<tr>
<td>CAPÍTULO 3 • DIVERSIDAD DE ECOSISTEMAS</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Introducción ..</td>
<td>71</td>
</tr>
<tr>
<td>Regionalización biológica</td>
<td>72</td>
</tr>
<tr>
<td>Regiones ecológicas</td>
<td>72</td>
</tr>
<tr>
<td>Provincias biogeográficas y ecorregiones</td>
<td>72</td>
</tr>
<tr>
<td>Tipos de vegetación de Puebla</td>
<td>75</td>
</tr>
<tr>
<td>Bosques ...</td>
<td>77</td>
</tr>
<tr>
<td>Matorral ...</td>
<td>79</td>
</tr>
<tr>
<td>Selvas ...</td>
<td>80</td>
</tr>
<tr>
<td>Agricultura ...</td>
<td>83</td>
</tr>
<tr>
<td>Estudio de caso 3.1 – Vegetación de la reserva de la biosfera Tehuacán Cuicatlán</td>
<td>84</td>
</tr>
<tr>
<td>Estudio de caso 3.2 – Bosques de Quercus o de encinos</td>
<td>86</td>
</tr>
<tr>
<td>Conclusión ...</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPÍTULO 4 • DIVERSIDAD DE ESPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción ...</td>
</tr>
<tr>
<td>Diversidad de bacterias</td>
</tr>
<tr>
<td>Introducción ...</td>
</tr>
<tr>
<td>Diversidad ...</td>
</tr>
<tr>
<td>Bacterias en la agricultura</td>
</tr>
<tr>
<td>Bacterias de importancia médica</td>
</tr>
<tr>
<td>Conclusión ...</td>
</tr>
<tr>
<td>Diversidad de hongos</td>
</tr>
<tr>
<td>Introducción ...</td>
</tr>
<tr>
<td>Diversidad de hongos. Chichilnanacat y hongos relacionados. Los Ascomycetes</td>
</tr>
<tr>
<td>Importancia y usos de los hongos en Puebla</td>
</tr>
<tr>
<td>Diversidad de prototistias</td>
</tr>
<tr>
<td>Introducción ...</td>
</tr>
<tr>
<td>Diversidad de protozoarios en Puebla</td>
</tr>
<tr>
<td>Protozoarios de importancia médica</td>
</tr>
<tr>
<td>Diversidad de especies de fitoplancton</td>
</tr>
<tr>
<td>Conclusión ...</td>
</tr>
<tr>
<td>Diversidad de especies vegetales</td>
</tr>
<tr>
<td>Introducción ...</td>
</tr>
<tr>
<td>Briofitas ...</td>
</tr>
<tr>
<td>Pteridofitas (helechos y grupos afines)</td>
</tr>
<tr>
<td>Angiospermas o magnoliophyta</td>
</tr>
<tr>
<td>Gmnoespermas ...</td>
</tr>
<tr>
<td>Diversidad de especies animales</td>
</tr>
<tr>
<td>Introducción ...</td>
</tr>
<tr>
<td>Zooplancton ...</td>
</tr>
<tr>
<td>Helmíntos intestinales</td>
</tr>
<tr>
<td>Insectos de Puebla</td>
</tr>
<tr>
<td>Peces ...</td>
</tr>
<tr>
<td>CAPÍTULO 5</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Introducción</td>
</tr>
<tr>
<td>Los recursos genéticos como componentes de la biodiversidad</td>
</tr>
<tr>
<td>Recursos fitogenéticos</td>
</tr>
<tr>
<td>Recursos forestales</td>
</tr>
<tr>
<td>Recursos zoogenéticos</td>
</tr>
<tr>
<td>Recursos genéticos microbianos</td>
</tr>
<tr>
<td>Recursos fitogenéticos cultivados</td>
</tr>
<tr>
<td>Cultivos básicos</td>
</tr>
<tr>
<td>Hortalizas</td>
</tr>
<tr>
<td>Ornamentales</td>
</tr>
<tr>
<td>Cultivos de uso industrial</td>
</tr>
<tr>
<td>Forrajeros</td>
</tr>
<tr>
<td>Frutales</td>
</tr>
<tr>
<td>Especies de recolección</td>
</tr>
<tr>
<td>Medicinales</td>
</tr>
<tr>
<td>Aromáticas y condimentos</td>
</tr>
<tr>
<td>Ornamentales</td>
</tr>
<tr>
<td>Otras</td>
</tr>
<tr>
<td>Especies forestales</td>
</tr>
<tr>
<td>Especies maderables</td>
</tr>
<tr>
<td>No maderables</td>
</tr>
<tr>
<td>Especies animales</td>
</tr>
<tr>
<td>Bovinos</td>
</tr>
<tr>
<td>Equinos</td>
</tr>
<tr>
<td>Ovinos</td>
</tr>
<tr>
<td>Caprinos</td>
</tr>
<tr>
<td>Porcinos</td>
</tr>
<tr>
<td>Aves</td>
</tr>
<tr>
<td>Fauna silvestre</td>
</tr>
<tr>
<td>Diversidad microbiana: su estudio y aprovechamiento actual y potencial</td>
</tr>
<tr>
<td>Conclusión</td>
</tr>
<tr>
<td>Estudio de caso 5.1 – Los patrones varietales en maíz</td>
</tr>
<tr>
<td>Estudio de caso 5.2 – Patrones varietales de maíz identificados en Puebla</td>
</tr>
</tbody>
</table>
Estudio de caso 5.3 – Diversidad del género Lupinus sp. en la región de los Valles de Serdán y Libres del estado de Puebla

CAPÍTULO 6 • USOS DE LA BIODIVERSIDAD EN EL ESTADO DE PUEBLA

Introducción .. 243
Servicios ambientales .. 243
- Usos del agua y situación de las cuencas hidrográficas ... 244
- Usos para acuacultura y pesca .. 246
- Manejo del suelo en Puebla .. 250
- Uso agrícola .. 250
- Uso ganadero .. 252
- Sistemas agrosilvopastoriles .. 256
- Pagos por servicios ambientales ... 257
- Turismo de naturaleza ... 259
El patrimonio forestal de Puebla y su problemática .. 260
- Aprovechamiento de recursos forestales no maderables .. 262
- Autorizaciones en el aprovechamiento forestal sustentable 264
Usos de la flora silvestre ... 265
Usos tradicionales de la fauna silvestre ... 267
- Unidades de manejo y aprovechamiento de la vida silvestre 271
- Ganadería diversificada en la región mixteca .. 272
Diversidad cultural y apropiación indígena de la naturaleza 273
El desarrollo comunitario por medio del aprovechamiento turístico de la biodiversidad .. 275
Los recursos naturales como materia prima de uso artesanal 277
- Uso biotecnológico de la diversidad bacteriana ... 279
Conclusión .. 280

CAPÍTULO 7 • AMENAZAS A LA BIODIVERSIDAD

Introducción .. 285
Cambios a nivel de ecosistemas: cambios de uso de suelo y vegetación 1980-2000 .. 285
- Instituto Nacional de Estadística, Geografía e Informática .. 285
Insectos y patógenos que afectan las áreas arboladas de Puebla 287
Identificación de amenazas a los objetos de conservación en la reserva de la biosfera Tehuacán-Cuicatlán .. 291
Transgénicos en Puebla, peligro para la biodiversidad en la cuna del maíz 294
- Amenazas a los anfibios en el estado de Puebla: dos casos de estudio 296
- Destrucción del hábitat de Incliius cristatus en la Sierra Norte 297
- Quirididomicosis en Plectrohyla arborescens en la Sierra Negra 297
Situción actual de los ambystomátidos (amphibia: caudata) de la cuenca oriental del estado de Puebla .. 298
- Situación de los Ambystomas en las lagunas cráter de la cuenca oriental 300
Amenaza a la biodiversidad microbiana por presencia de hidrocarburos en el suelo .. 303
Estudio de caso 7.1 – Contaminación de cuerpos superficiales de aguas en Tehuacán, Puebla .. 304
Estudio de caso 7.2 – Amenazas a la biodiversidad en sistemas acuáticos: el caso de Valsequillo ... 305
Conclusión .. 306
CAPÍTULO 8 • PROTECCIÓN Y CONSERVACIÓN DE LA BIODIVERSIDAD DEL ESTADO DE PUEBLA

Introducción .. 311
Protección y conservación de la biodiversidad ... 312
Áreas naturales protegidas federales de Puebla ... 312
Áreas naturales protegidas estatales ... 322
Otras áreas .. 312
Parque estatal Flor del Bosque .. 322
Identificación de las regiones prioritarias para la conservación ... 326
Conservación Ex Situ .. 327
Bancos de semillas y germoplasma ... 328
Jardines botánicos ... 328
Reproducción de especies en cautiverio / zoológicos ... 328
Conservación de suelos ... 331
Reforestación .. 333
Ordenamiento ecológico territorial .. 340
Programa de ordenamiento ecológico regional del Popocatépetl y zona de influencia, 2004 341
Programa de ordenamiento ecológico regional centro-poniente, 2007 ... 343
Programa de ordenamiento ecológico regional de la Mixteca poblana, 2008 ... 343
Programa de ordenamiento ecológico regional cuenca Necaxa-Laxaxalpan, 2008 343
Programa de ordenamiento ecológico regional cuenca Tuxpan (caracterización), 2008 343
Programas de ordenamiento ecológico municipales, 2007 ... 343
Programas de ordenamiento ecológico municipales en municipios de muy alta marginación, 2008 345
Programas de ordenamiento ecológico municipales en cuatro municipios de muy alta marginación ororiental, 2008 ... 345
Programa de ordenamiento ecológico municipal de Venustiano Carranza, 2008 345
Programas de ordenamiento ecológico municipales en cinco municipios con localidades de alta marginación al norte del estado ... 345
Programa de ordenamiento ecológico territorial del estado de Puebla, 2008 ... 345
Acciones específicas de protección de la biodiversidad .. 347

CAPÍTULO 9 • EDUCACIÓN Y CULTURA AMBIENTAL

Introducción .. 357
Marco jurídico de la educación ambiental en el estado de Puebla ... 357
Educación formal ... 358
La construcción de una cultura ambiental mediante la educación formal en Puebla 358
Conocimiento de la biodiversidad ... 360
Acciones que se están tomando en la educación ambiental .. 361
Educación no formal .. 362
Comentarios finales ... 369
Estudio de caso 9.1 – Conocimiento de los animales silvestres en Puebla por los estudiantes de educación primaria .. 370
Estudio de caso 9.2 – La transversalidad ambiental en la Universidad Iberoamericana, plantel Puebla y la biodiversidad ... 372
Estudio de caso 9.3 – La contribución de los jóvenes poblanos en la conservación de la biodiversidad 373
| Estudio de caso 9.4 – Programa de radio Tras las huellas de la naturaleza | 374 |
| Estudio de caso 9.5 – Los medios de comunicación y la conservación en Puebla | 375 |

CAPÍTULO 10 • MARCO JURÍDICO E INSTITUCIONAL PARA EL USO Y LA CONSERVACIÓN DE LA BIODIVERSIDAD

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción</td>
<td>379</td>
</tr>
<tr>
<td>Legislación internacional</td>
<td>379</td>
</tr>
<tr>
<td>Legislación federal</td>
<td>380</td>
</tr>
<tr>
<td>Normas oficiales mexicanas</td>
<td>382</td>
</tr>
<tr>
<td>Legislación estatal</td>
<td>384</td>
</tr>
<tr>
<td>Acuerdos estatales</td>
<td>384</td>
</tr>
<tr>
<td>Leyes estatales</td>
<td>385</td>
</tr>
<tr>
<td>Programas estatales, regionales o locales para la protección de especies</td>
<td>385</td>
</tr>
<tr>
<td>Estudio de caso 10.1 – Legislación municipal. Municipio de Puebla</td>
<td>389</td>
</tr>
<tr>
<td>Estudio de caso 10.2 – Análisis de políticas públicas</td>
<td>390</td>
</tr>
</tbody>
</table>

CAPÍTULO 11 • GESTIÓN AMBIENTAL

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción</td>
<td>393</td>
</tr>
<tr>
<td>Sector público</td>
<td>393</td>
</tr>
<tr>
<td>El sistema de gestión forestal</td>
<td>394</td>
</tr>
<tr>
<td>Sector privado</td>
<td>397</td>
</tr>
<tr>
<td>Sector académico</td>
<td>398</td>
</tr>
<tr>
<td>Organizaciones no gubernamentales</td>
<td>400</td>
</tr>
<tr>
<td>Conclusiones y estrategias</td>
<td>401</td>
</tr>
</tbody>
</table>

CAPÍTULO 12 • HACIA LA ESTRATEGIA ESTATAL DE CONSERVACIÓN Y USO SUSTENTABLE DE LA BIODIVERSIDAD EN EL ESTADO DE PUEBLA

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>403</td>
</tr>
<tr>
<td>El estudio de la biodiversidad de Puebla: principales conclusiones</td>
<td>403</td>
</tr>
</tbody>
</table>

LOS AUTORES

| Listado por orden alfabético | 409 |
Biodiversidad

La diversidad biológica es un concepto que normalmente asociamos con la variedad de especies de animales y plantas observables a simple vista. No obstante, para el Convenio de Diversidad Biológica de las Naciones Unidas (CDB), su definición es más amplia y abarca la variedad de las especies vivientes, no sólo las plantas (Plantae) y los animales (Animalia), sino los hongos (Fungi), protozoarios (Protista) y bacterias (Monera). Además la biodiversidad también incluye a los ecosistemas que las especies habitan y la variabilidad genética que estas poseen (CDB 1992, Conabio 2000). Recientemente se ha propuesto incluir a la variedad de plantas domesticadas por el hombre y sus parientes silvestres (agrobiodiversidad), la diversidad de grupos funcionales en el ecosistema (herbívoros, carnívoros, parásitos, saprófitos, entre otros) y la diversidad cultural humana (costumbres, lenguas y cosmovisiones) (Figura A.1 Niveles de la biodiversidad, de acuerdo al CDB).

Importancia de la biodiversidad

Los seres humanos hemos dado valor a la diversidad biológica desde tres puntos de vista: 1) biológico, debido a que cada uno de sus componentes constituye un reservorio de información evolutiva irremplazable; 2) económico, ya que obtenemos bienes esenciales para el desarrollo de nuestra vida diaria,
por ejemplo, las variedades de especies vegetales y animales domesticadas, las materias primas de uso industrial (resinas, maderas, fibras, celulosa, entre otros) o los compuestos activos para la industria farmacéutica (anticoagulantes, antivenenos, anti-conceptivos, antibióticos, entre otros); 3) cultural, como fuente de inspiración literaria, creencias, mitos y cosmovisiones (Toledo 1997).

Además, la biodiversidad, específicamente los ecosistemas, otorgan servicios (ecosistémicos o ambientales) a la sociedad, que pueden ser: 1) de provisión, a través de todas las materias primas como fibras, madera, agua y alimentos; 2) de regulación, como la regulación del clima, de enfermedades y control de la erosión; 3) de soporte, como la formación de suelos y reciclado de nutrientes; y 4) culturales, como fuente de inspiración artística o espiritual, sitios recreativos, entre otras (Conabio 2006; Figura A.2).

MÉXICO, PAÍS MEGADIVERSO

La biodiversidad no se distribuye de manera uniforme en el planeta. En general, las regiones tropicales albergan mayor riqueza de especies. En la actualidad se reconoce que 17 países son megadiversos, ya que su diversidad biológica representa alrededor del 70 % de las especies conocidas en el planeta. Estos países son: México, Australia, Brasil, China, Colombia, Congo, Ecuador, Estados Unidos, Filipinas, India, Indonesia, Malasia, Madagascar, Perú, Papúa Nueva Guinea, Sudáfrica y Venezuela (Mittermeier et al. 1997).

En el caso particular de nuestro país, es sorprendente que a pesar de que su superficie representa tan solo el 1.5 % del área terrestre del mundo, contiene entre el 10 y 12 % de las especies conocidas (Conabio 2006, Sarukhán et al. 2009). Dependiendo del grupo que se trate, entre 9 y 60 % de las especies registradas en México son endémicas, es decir, que se localizan únicamente en nuestro país (Sarukhán et al. 2009).

EL CONVENIO DE DIVERSIDAD BIOLÓGICA (CDB) DE LAS NACIONES UNIDAS

En 1992 durante la Cumbre de Río, en la Ciudad de Río de Janeiro, Brasil, los líderes del mundo preocupados por la pérdida de diversidad biológica, el calentamiento global y la degradación ambiental, firmaron tres instrumentos internacionales: el Convenio Marco sobre Cambio Climático (CMNUCC), el Convenio de Lucha contra la Desertificación (CNULCD) y el Convenio sobre la Diversidad Biológica. Este último es un tratado mundial jurídicamente vinculante que persigue tres objetivos fundamentales: 1) la conservación de la diversidad biológica, 2) el uso sostenible de sus componentes...
y 3) la distribución justa y equitativa de los beneficios provenientes de la utilización de los recursos genéticos. La participación en dicho Convenio es prácticamente global, lo que refleja de algún modo la preocupación sobre el deterioro ambiental, la pérdida de diversidad y la necesidad de realizar acciones que aseguren su conservación en el largo plazo.

En la 10ª Conferencia de las Partes del CDB, celebrada en Nagoya, Japón, en Octubre de 2010, se aprobó un nuevo Plan Estratégico para el periodo 2011-2020. Vivamos en armonía con la naturaleza, es la visión para el 2050 de este Plan que regirá la vida del CDB durante los próximos diez años y cuyo propósito es que la diversidad biológica sea valorada, conservada, restaurada y utilizada en forma racional, para mantener los servicios de los ecosistemas en un planeta sano, que brinde los beneficios esenciales y necesarios para todos sus habitantes. La misión del Plan consiste en tomar medidas efectivas y urgentes para detener la pérdida de biodiversidad y que para el 2020 los ecosistemas continúen suministrando servicios ambientales, lo cual es esencial para garantizar no sólo la variedad de la vida, sino su continuidad. El Plan Estratégico 2011-2020 establece cinco objetivos estratégicos y 20 metas, todas ellas situadas dentro de un marco flexible con el fin de que los países puedan definir sus propias metas de acuerdo con sus capacidades y prioridades.

LA EVALUACIÓN DE LOS ECOSISTEMAS DEL MILENIO Y LA TERCERA PERSPECTIVA GLOBAL SOBRE BIODIVERSIDAD

En el año 2000, la Organización de las Naciones Unidas (ONU) solicitó realizar la Evaluación de los Ecosistemas del Milenio (MEA 2005), un esfuerzo internacional que contó con la participación de 1360 expertos científicos de 95 países con el objetivo de evaluar las consecuencias del cambio en los ecosistemas para el bienestar humano (Figura A.3). Las principales conclusiones de este trabajo sin precedentes se resumen así:

I) Durante los últimos 50 años los humanos hemos modificado los ecosistemas, más rápida y ampliamente que en cualquier otro periodo comparable de nuestra historia, para satisfacer nuestras necesidades. Esto ha derivado en la pérdida irremediable de diversidad biológica sobre la Tierra.

II) Muchas personas se han beneficiado de la utilización y transformación de los ecosistemas naturales y de la explotación de la diversidad biológica. Sin embargo, estos beneficios tienen cada vez costos mayores en forma de pérdida de ecosistemas y especies, degradación de los servicios de los ecosistemas e incremento de la pobreza de otros pueblos.

![Figura A.3](Figura A.3 Factores directos e indirectos responsables de los cambios en la biodiversidad, sus servicios ambientales y las consecuencias para el bienestar humano. (Fuente: modificado de Conabio 2006).)
III) Las cinco causas directas más importantes de pérdida de biodiversidad y de cambio y deterioro en los servicios de los ecosistemas son: la pérdida de los hábitats, el cambio climático, las especies exóticas invasoras, la sobreexplotación y la contaminación.

IV) Para alcanzar un progreso mayor en la conservación de la diversidad biológica que permita al mismo tiempo mejorar el bienestar humano y reducir la pobreza, será necesario intensificar los esfuerzos de conservación y utilización sostenible de la diversidad biológica y de los servicios de los ecosistemas. Pero estos esfuerzos no serán suficientes mientras no existan las condiciones favorables para atacar tanto las causas indirectas como las directas de la pérdida de biodiversidad.

V) Una mejor capacidad para predecir las consecuencias de la pérdida de biodiversidad, el funcionamiento de los ecosistemas y sus servicios, junto con mediciones mejoradas de la diversidad biológica, ayudarían a la adopción de decisiones a todos los niveles.

VI) La ciencia puede ayudar a asegurar que se adopten decisiones basadas en la mejor información disponible, pero en última instancia será la sociedad la que determine el futuro de la diversidad biológica.

En el 2010 el Secretariado del Convenio de Biodiversidad Biológica publicó la Tercera Perspectiva Global sobre Biodiversidad (GB03, por sus siglas en ingles), en este documento, basado en los cerca de 120 informes nacionales presentados por las Partes del Convenio, se concluye que la meta al 2010 no se alcanzó. Además, indica que las tendencias actuales de deterioro y pérdida de biodiversidad se están acercando a puntos de inflexión cuyas consecuencias más graves implicarían la reducción de la capacidad de los ecosistemas para proporcionar servicios esenciales. Reconoce que las principales presiones causantes de la pérdida de diversidad biológica no sólo son constantes sino que además, en algunos casos, se están intensificando. No obstante, la acción nacional e internacional en apoyo de la diversidad biológica se está moviendo en la dirección correcta en varios campos importantes. Se están protegiendo más zonas terrestres y marinas, hay más países luchando contra la grave amenaza de las especies exóticas invasoras, y se está destinando más dinero a la aplicación del Convenio sobre la Diversidad Biológica. Pero de no emprender acciones urgentes y contundentes que corrijan las situaciones que amenazan a la biodiversidad se tendrán graves consecuencias para todos.

Desafortunadamente nuestro país comparte una realidad ambiental con tendencias similares a las identificadas a nivel mundial (Conabio 2006). Esto se debe en gran medida a factores relacionados con los modos de producción y obtención de bienes y servicios que han resultado no sustentables.

La pérdida de biodiversidad y la degradación de los ecosistemas también conllevan una degradación cualitativa y cuantitativa de los servicios ambientales que nos prestan y de los cuales depende directamente el bienestar de todas las personas (Conabio 2006).

MÉXICO Y EL CONVENIO DE DIVERSIDAD BIOLÓGICA

México fue el 12° país en ratificar el CDB en 1993. Como resultado del cumplimiento de los compromisos adquiridos ante el Convenio, en 1998 se publicó “La diversidad biológica de México: Estudio de país”, que fue el primer diagnóstico de la situación general de la biodiversidad, mediante el cual se identificaron los principales usos, amenazas, necesidades y oportunidades para su conservación (Conabio 1998).

Posterior a la publicación del Estudio de País, se formuló la Estrategia Nacional de Biodiversidad de México (ENBM; Conabio 2000) que fue el resultado de una serie de talleres y reuniones sectoriales donde participaron cerca de 400 personas. La ENBM plantea una visión a cincuenta años en el que se concibe a México como un país que ha logrado obtener un mayor conocimiento de su diversidad biológica, así como detener y revertir los procesos...
de deterioro ambiental. Para lograr esta visión se planteó la instrumentación de cuatro líneas estratégicas: 1) Protección y conservación; 2) Valoración de la biodiversidad; 3) Conocimiento y manejo de la información y 4) Diversificación del uso.

México ha publicado “Capital Natural de México” en esta obra se utilizó el enfoque metodológico de la Evaluación de los Ecosistemas del Milenio (MEA 2005) y consta de cinco volúmenes I. Conocimiento actual de la biodiversidad; II. Estado de conservación y tendencias de cambio; III. Políticas públicas y perspectivas de sustentabilidad; IV. Capacidades humanas, institucionales y financieras, y V. Escenarios futuros, con los que se busca diseñar soluciones en materia ambiental, con base en la definición actualizada de los problemas. Los tres primeros volúmenes de esta obra, así como una síntesis ejecutiva fueron publicados en 2009, tras un esfuerzo sin precedentes de varios años, con la participación de 648 autores y 96 revisores externos de 227 instituciones (Sarukhán et al. 2009).

El Cuarto Informe Nacional de México al Convenio de Diversidad Biológica (Conabio y Semarnat, 2009), que es la comunicación más reciente con respecto al cumplimiento de este Convenio, resalta en sus conclusiones la necesidad de evaluar, revisar y actualizar la ENBM, con la finalidad de que ésta sea un instrumento eficaz de planeación en materia de conservación y uso sustentable de la biodiversidad. Esta tarea pendiente para México cobra ahora mayor sentido, con la reciente aprobación del Plan Estratégico del CDB para el periodo 2011 – 2020, que incluye una meta al 2015 en la que los países habrán revisado y en su caso actualizado sus respectivas estrategias nacionales, con la finalidad de alinearlas al Plan Estratégico del CDB.

LA INSTRUMENTACIÓN DE LA ESTRATEGIA NACIONAL DE BIODIVERSIDAD: LAS ESTRATEGIAS ESTATALES DE BIODIVERSIDAD

Para poder alcanzar los objetivos planteados en el CDB y llevar a cabo las acciones trazadas en la ENBM desde una perspectiva federalista, la Conabio, en colaboración con gobiernos Estatales y representantes de los diversos sectores de la sociedad, inició los trabajos de elaboración de las Estrategias Estatales sobre Biodiversidad (EEB), un proceso que toma en cuenta la diversidad cultural, geográfica, social y biológica de México. Los objetivos de este proceso en el largo plazo son:

1. Contar con herramientas de planificación a escala adecuada (estatal) para la toma de decisiones con respecto a la gestión de los recursos biológicos.

2. Institucionalizar políticas públicas en materia de biodiversidad.
 a. Establecer Sistemas Estatales de Información sobre Biodiversidad (como parte del SNIB).
 b. Consolidar los Sistemas Estatales de Áreas Naturales Protegidas (ANPs).
 c. Establecer programas permanentes de educación ambiental y difusión sobre la importancia de la biodiversidad.
 d. Integrar y armonizar iniciativas de conservación y uso sustentable.

3. Promover factura local de leyes sobre biodiversidad, el reparto equitativo de los beneficios del aprovechamiento y la conservación de la biodiversidad.

4. Facilitar el intercambio científico, cultural y político referente a la biodiversidad a distintas escalas, en el marco del CDB.

De forma análoga a la ENBM, el proceso de las EEB busca completar dos documentos de planificación estratégica importantes (Figura A.4): 1) Estudio de Estado, que es un diagnóstico de línea base sobre la biodiversidad del estado en sus diferentes niveles, y 2) Estrategia Estatal sobre Biodiversidad, que es un documento de planificación estratégica que establece las líneas prioritarias, acciones y recursos que cada entidad necesita para conservar y aprovechar sustentablemente su diversidad biológica. La formulación de estos dos documentos requiere de la amplia participación de diversos sectores de la sociedad que permitan la identificación de prioridades y la implementación de la Estrategia.
La estrategia estatal para la conservación y uso sustentable de la biodiversidad del estado de Puebla

En el contexto global, México ocupa el lugar 15 de 25 países que generan las mayores emisiones de gases de efecto invernadero y el estado de Puebla también es vulnerable ante los efectos del cambio climático (Semarnat e INE, 2009). Esta vulnerabilidad se debe a la alta concentración demográfica en los municipios que conforman el área metropolitana de la ciudad de Puebla, a los elevados procesos de industrialización, al incremento de vehículos automotores, así como a los altos niveles de pobreza y marginación en varias regiones del estado. Estos factores han ocasionado en la última década una disminución de la precipitación pluvial en 200 l/m² y una temperatura media anual de 17.5 °C que son característicos de un clima semiárido (Mayorga com. pers. 2009). En este sentido, se prevé un cambio climático que propiciaría condiciones similares a las de la Mixteca Poblana, como sequías severas y reducción del potencial agropecuario.

Ante esta situación y consciente de la problemática ambiental que enfrenta el estado, además de los retos que suponen el mantener un balance entre el desarrollo económico y social, la conservación y aprovechamiento sustentable de su biodiversidad, la entonces Secretaría del Medio Ambiente y Recursos Naturales del estado de Puebla (SMRN), ahora Secretaría de Sustentabilidad Ambiental y Ordenamiento Territorial (SSAOT) contactó a la Conabio para dar inicio al proceso de su Estrategia Estatal de Conservación y Uso Sustentable de la Biodiversidad. Durante 2006 se realizaron las primeras reuniones informativas sobre el proceso de las Estrategias Estatales de Biodiversidad con diversas instituciones de gobierno tanto estatales, como federales y el sector académico, principalmente universidades y centros de investigación. En 2007 se nombró a los investigadores que serían los coordinadores de cada uno de los capítulos del Estudio de Estado (Cuadro A.1).

Finalmente, tras un esfuerzo de colaboración sin precedentes para el estado, en el que participaron 31 instituciones estatales, nacionales y extranjeras y más de un centenar de autores (Cuadro A.2), Puebla ha cumplido con la primera meta de este proceso...
Cuadro A.1 Coordinadores de cada uno de los capítulos del Estudio de Estado.

<table>
<thead>
<tr>
<th>Nombre del Coordinador</th>
<th>Capítulo</th>
<th>Dependencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. en C. José Adrián Saldán Murive</td>
<td>Medio Físico</td>
<td>BUAP</td>
</tr>
<tr>
<td>Dr. Ricardo Pérez Avilés</td>
<td>Medio Socioeconómico</td>
<td>BUAP</td>
</tr>
<tr>
<td>M. en C. Salvador Romero Castañón</td>
<td>Diversidad de Ecosistemas</td>
<td>BUAP</td>
</tr>
<tr>
<td>M. en C. Gonzalo Yanes Gómez</td>
<td>Diversidad de Especies</td>
<td>BUAP</td>
</tr>
<tr>
<td>M. en C. Lucía López Reyes</td>
<td>Usos de la Biodiversidad</td>
<td>BUAP</td>
</tr>
<tr>
<td>M. en C. María Concepción López Téllez</td>
<td>Amenazas a la Biodiversidad</td>
<td>BUAP</td>
</tr>
<tr>
<td>M. en C. Gonzalo Yanes Gómez</td>
<td>Protección a la Biodiversidad</td>
<td>Reserva de la Biosfera Tehuacán - Cucatlán</td>
</tr>
<tr>
<td>Dr. Antonio Fernández Crispín</td>
<td>Educación y Cultura Ambiental</td>
<td>BUAP</td>
</tr>
<tr>
<td>Dra. Sonia Emilia Silva Gómez</td>
<td>Marco Jurídico</td>
<td>BUAP</td>
</tr>
<tr>
<td>Dr. Oscar A. Villarreal Espino Barros</td>
<td>Gestión Ambiental</td>
<td>BUAP</td>
</tr>
</tbody>
</table>

Cuadro A.2 Instituciones participantes en la elaboración del Estudio de Estado de Puebla.

<table>
<thead>
<tr>
<th>INSTITUCIONES ACADÉMICAS Y DE INVESTIGACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Benemérita Universidad Autónoma de Puebla (BUAP)</td>
</tr>
<tr>
<td>2 Colegio de Posgraduados</td>
</tr>
<tr>
<td>3 Universidad Iberoamericana Campus Golfo-Centro</td>
</tr>
<tr>
<td>4 Instituto de Estudios Superiores</td>
</tr>
<tr>
<td>5 Universidad de las Américas</td>
</tr>
<tr>
<td>6 Universidad Veracruzana</td>
</tr>
<tr>
<td>7 Universidad Autónoma Chapingo</td>
</tr>
<tr>
<td>8 Universidad Nacional Autónoma de México</td>
</tr>
</tbody>
</table>
Continúa cuadro A.2

<table>
<thead>
<tr>
<th>INSTITUCIONES ACADÉMICAS Y DE INVESTIGACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Instituto Tecnológico Superior de Zacapoaxtla</td>
</tr>
<tr>
<td>10 Instituto de Ecología A. C. Xalapa</td>
</tr>
<tr>
<td>11 Universidad Autónoma de Madrid</td>
</tr>
<tr>
<td>12 Universidad Veracruzana</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORGANIZACIONES NO GUBERNAMENTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Centro para la Conservación del Patrimonio Natural y Cultural de México, A. C.</td>
</tr>
<tr>
<td>14 Conciencia Ecológica de Veracruz, A. C.</td>
</tr>
<tr>
<td>15 Conservación de la Biodiversidad del Centro de México, A. C.</td>
</tr>
<tr>
<td>16 Ventana Ambiental</td>
</tr>
<tr>
<td>17 Nueva Tierra Baldía</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPENDENCIAS GUBERNAMENTALES ESTATALES Y MUNICIPALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Secretaría de Planeación y Desarrollo Regional</td>
</tr>
<tr>
<td>19 Instituto del Medio Ambiente</td>
</tr>
<tr>
<td>20 Consejo Estatal de Población</td>
</tr>
<tr>
<td>21 Secretaría de Turismo</td>
</tr>
<tr>
<td>22 Secretaría del Medio Ambiente y Recursos Naturales del Estado de Puebla</td>
</tr>
<tr>
<td>23 Secretaría de Desarrollo Rural</td>
</tr>
<tr>
<td>24 Agencia de Protección al Ambiente y Desarrollo Sustentable del Municipio de Puebla</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPENDENCIAS GUBERNAMENTALES FEDERALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Instituto Nacional de Estadística y Geografía</td>
</tr>
<tr>
<td>26 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad</td>
</tr>
<tr>
<td>27 Comisión Nacional del Agua</td>
</tr>
<tr>
<td>28 Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias</td>
</tr>
<tr>
<td>29 Secretaría de Medio Ambiente y Recursos Naturales</td>
</tr>
<tr>
<td>30 Dirección de la Reserva de la Biosfera Tehuacán - Cuicatlán</td>
</tr>
<tr>
<td>31 Dirección del Parque Nacional Iztapopo Zoquiapan</td>
</tr>
<tr>
<td>32 Comisión Nacional Forestal</td>
</tr>
<tr>
<td>33 Comisión de Pueblos Indígenas</td>
</tr>
<tr>
<td>34 Procuraduría Federal de Protección al Ambiente delegación Puebla</td>
</tr>
</tbody>
</table>
mediante la publicación de “La Biodiversidad en Puebla: Estudio de Estado”, obra que constituye el compendio más completo y actualizado de información sobre la diversidad biológica de Puebla.

En la elaboración de esta obra se realizaron diez reuniones informativas sobre el proceso de las Estrategias Estatales de Biodiversidad con personal académico de diversas instituciones y personal de la SMRN (Figura A.5).

Una vez asignados los coordinadores de capítulo, se procedió a convocar a expertos en las diferentes temáticas y se organizaron diversas reuniones para dar a conocer la mecánica de trabajo. Finalmente, se nombró al Consejo Editorial Científico, responsable de realizar la revisión y validación técnica científica en coordinación con la Conabio.

El Estudio está conformado por un capítulo introductorio, 12 capítulos con sus respectivos anexos, referencias bibliográficas y resúmenes curriculares de los autores. Cada capítulo consta de una introducción, el cuerpo de capítulo, cuadros, figuras y estudios de caso, que ayudan al lector a tener una comprensión integral de la obra. Los anexos incorporados en el CD permiten complementar el conocimiento proporcionando información técnica y científica a detalle.

Respecto a las fuentes de información sobre la biodiversidad de Puebla, se utilizaron los 75 953 registros del Sistema Nacional de Información sobre Biodiversidad de México (SNIB) de la Conabio. Sin embargo, la principal fuente de información fue el conjunto de datos recabados por los investigadores de las diferentes instituciones que colaboraron en la presente obra, llegando a 6 026 especies pertenecientes a diversos grupos biológicos (Cuadro A.3, Cuadro A.4).

Por último, es importante señalar que La Biodiversidad en Puebla: Estudio de Estado representa un parteaguas del conocimiento del enorme patrimonio natural del estado, al presentarse por primera vez un diagnóstico completo y actualizado, que sentará las bases para el diseño de las acciones y estrategias, que aseguren la conservación y el uso racional y sostenido de la diversidad biológica en la entidad a través del desarrollo de una segunda fase denominada: la Estrategia Estatal para la Conservación y Uso Sustentable de la Biodiversidad del estado de Puebla.

Figura A.5 Taller de información y elaboración del Estudio de Biodiversidad de Puebla, realizado el 13 de febrero de 2009 (Foto: Gobierno del Estado).
Cuadro A.3 Número de especies registradas en el estado de Puebla.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiospermas</td>
<td>4 104</td>
</tr>
<tr>
<td>Aves</td>
<td>595</td>
</tr>
<tr>
<td>Pteridofitas</td>
<td>289</td>
</tr>
<tr>
<td>Insectos</td>
<td>209</td>
</tr>
<tr>
<td>Reptiles</td>
<td>187</td>
</tr>
<tr>
<td>Protistas</td>
<td>165</td>
</tr>
<tr>
<td>Mamíferos</td>
<td>161</td>
</tr>
<tr>
<td>Hongos</td>
<td>131</td>
</tr>
<tr>
<td>Anfibios</td>
<td>60</td>
</tr>
<tr>
<td>Peces</td>
<td>47</td>
</tr>
<tr>
<td>Gimnospermas</td>
<td>35</td>
</tr>
<tr>
<td>Bacterias</td>
<td>31</td>
</tr>
<tr>
<td>Otros invertebrados</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>6 026</td>
</tr>
</tbody>
</table>

(Fuente: diversas señaladas en los textos correspondientes de esta obra)

Cuadro A.4 Comparativo de la diversidad de vertebrados y plantas vasculares en Puebla respecto al total nacional.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>México</th>
<th>Puebla según CNM (Sarukhán, 2009)</th>
<th>PUEBLA (esta obra)</th>
<th>Porcentaje en PUEBLA respecto al total nacional (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicotiledóneas</td>
<td>19 065</td>
<td>2,026 (incluye Angiospermas y Gimnospermas)</td>
<td>3 373</td>
<td>17.7</td>
</tr>
<tr>
<td>Monocotiledóneas</td>
<td>4 726</td>
<td></td>
<td>731</td>
<td>15.5</td>
</tr>
<tr>
<td>Peces</td>
<td>2 692</td>
<td>4</td>
<td>47</td>
<td>1.7</td>
</tr>
<tr>
<td>Briofitas</td>
<td>1 482</td>
<td>297</td>
<td>88</td>
<td>5.9</td>
</tr>
<tr>
<td>Aves</td>
<td>1 096</td>
<td>347</td>
<td>595</td>
<td>54.7</td>
</tr>
<tr>
<td>Musgos</td>
<td>1 067</td>
<td></td>
<td>288</td>
<td>27.0</td>
</tr>
<tr>
<td>Reptiles</td>
<td>804</td>
<td>-</td>
<td>187</td>
<td>23.1</td>
</tr>
<tr>
<td>Mamíferos</td>
<td>535</td>
<td>144</td>
<td>161</td>
<td>30.1</td>
</tr>
<tr>
<td>Anfibios</td>
<td>361</td>
<td>-</td>
<td>60</td>
<td>16.6</td>
</tr>
<tr>
<td>Gimnospermas</td>
<td>150</td>
<td>35</td>
<td>23.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39 992</td>
<td>5 891</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Fuente: Sarukhán 2009, Distintos textos en esta obra)
LITERATURA CITADA

Axalapasco de Quechulac (El término de Axalapasco se refiere a un cráter de origen volcánico que se encuentra ocupado por un cuerpo de agua; son comunes en los límites entre Puebla y Veracruz). Foto: Oscar Villareal.
INTRODUCCIÓN
José Adrián Saldaña Munive

Las variables propias del medio físico, como el relieve y el clima, no sólo determinan procesos biofísicos como la hidrología y la edafología: en suma imprimen una huella en el desarrollo de las comunidades vegetales, animales y humanas. En este capítulo se describen las principales variables que identifican al territorio poblano.

El estado de Puebla se ubica en la parte centro-este del país; tiene una superficie de 34 290 km², que representa el 1.7 % del espacio total nacional. Se caracteriza por una amplia heterogeneidad topográfica pues alberga cuatro grandes provincias biogeográficas: la Sierra Madre Oriental, la Llanura Costera del Golfo Norte, el Eje Neovolcánico, y la Sierra Madre del Sur.

Esta diversidad geomorfológica ocasiona marcados cambios de altitud que dan lugar a una amplia diversidad de climas, dominando los climas templados que cubren la mayor parte del territorio, seguidos de los cálidos y los semicálidos; la heterogeneidad climática se debe, en parte, a que conforme aumenta la altitud disminuye la temperatura y el territorio poblano está dominado por topografía montañosa y de lomeríos (65 %).

Este territorio se caracteriza por contar con pocos afluentes superficiales de gran importancia, lo que provoca que la economía del campo se centre fundamentalmente en el agua subterránea. En este capítulo se describen las principales cuencas asociadas con los usos y explotación de acuíferos, identificándose cuatro grandes regiones hidrológicas, la RH 18, la RH 26, la RH 27 y la RH 28.

La enorme heterogeneidad que se desarrolla en el estado favorece también la presencia de un amplio abanico de tipos de suelo, hasta alcanzar 21 unidades edafológicas.

Un problema actual relacionado con la biodiversidad es el cambio de uso de suelo, cuyos procesos erosivos, que resultan de la deforestación-erosión e inestabilidad de laderas, han originado situaciones de desastre con importantes desplazamientos de organismos (Alcántara 2005); esta problemática se origina por el aprovechamiento de recursos naturales sin criterios de sustentabilidad, lo que altera los ecosistemas (Hadi et al. 2001). Las investigaciones realizadas han demostrado que las presiones biológicas ejercidas por factores del ambiente como lo son particularmente los elementos del clima tales como la temperatura y la precipitación, determinan tales desplazamientos y en el caso más grave su extinción (Anaya 1990).

SUPERFICIE Y RELIEVE
Ana María Palomares López y María de Lourdes Guevara Romero

El estado de Puebla se ubica en la parte centro-este del país, no cuenta con salida al mar, su contorno semeja un triángulo isósceles, cuyo vértice apunta hacia el norte y la base hacia el sur. Sus coordenadas geográficas extremas son: al norte 20° 50‘; al sur 17° 52‘; al este 96° 43‘ y al oeste 99° 04’ (Gobierno del estado de Puebla 1997).

Colinda al norte con los estados de Hidalgo y Veracruz, al este también con Veracruz y Oaxaca, al sur con éste último y Guerrero y al oeste con este estado, Morelos, México, Tlaxcala e Hidalgo (Tamayo 1996).

El territorio se entiende como un espacio tridimensional en el que se desarrollan las comunidades vegetales, animales y humanas. Son muchos los enfoques que buscan estudiarlo y analizarlo; uno de los más usados es el enfoque geomorfológico,
que estudia de manera descriptiva y explicativa las formas que tiene la corteza terrestre; es uno de los factores primordiales que ha contribuido en la definición de la relación roca-estructura-relieve-clima, siendo estos elementos esenciales los que modifican al territorio poblano en términos de tiempo geológico y son más estables, a diferencia de la vegetación y el uso del suelo, que cambian de forma rápida y abrupta considerando la influencia del hombre (Morán-Zenteno 1984) (Figura 1.1).

Provincias fisiográficas del estado de Puebla y sus subdivisiones

Puebla cuenta con una superficie de 34 290 km², que representa el 1.7 % del espacio total del país, cuyos límites encierran áreas que corresponden a cuatro provincias fisiográficas: Sierra Madre Oriental, Llanura Costera del Golfo Norte, Eje Neovolcánico y Sierra Madre del Sur, constituidas a su vez por 10 subprovincias fisiográficas (Figura 1.2), que observan características distintivas en cuanto a geología, altitud, hidrología, clima, precipitación pluvial, suelos y vegetación (INEGI 2004).

Provincia Sierra Madre Oriental
Se extiende paralela a la costa del Golfo de México; es un conjunto de sierras de estratos plegados, de origen sedimentario marino, de edad mesozoica y sus cumbres presentan altitudes variantes entre los 2 000 y 3 000 msnm. Está representada por la subprovincia Carso Huasteco meridional perteneciente a la región Sierra Norte de Puebla. Limita al norte y noreste con la Subprovincia de Llanuras y Lomeríos; al este con la Subprovincia Chiconquiaco, perteneciente al Eje Neovolcánico; al sureste con la Subprovincia Lagos y Volcanes de Anáhuac y hacia el noroeste se interna en territorio veracruzano e hidalguense. El sistema de topoformas que domina es el de sierra altas, con grandes valles, mesetas y lomeríos escarpados, que cubren prácticamente toda esta zona (INEGI 2004).

Provincia Llanura Costera del Golfo Norte
Se extiende sobre las costas del Golfo de México, desde el Río Bravo hasta la zona de Nautla, Veracruz. A diferencia de las otras provincias, geológicamente forma una costa de surgimiento constituida por materiales sedimentarios marinos cuya edad varía (desde el Cretácico hasta el Cuaternario). Está representada por la subprovincia Llanuras y
Figura 1.2. Superficie y Relieve del estado de Puebla (INEGI 2009)
Lomeríos, ocupa el extremo norte y parte del ex-tremo noreste, colindando al sur y oeste con la Subprovincia Carso Huasteco, al este con la sub-provincia Chiconquiaco del Eje Neovolcánico y hacia el norte y noroeste continúa por el estado de Vera-cruz. Presenta un sistema de topoformas con lomeríos, valles y mesetas cerca de la Sierra Madre Oriental (INEGI 2000).

Provincia Eje Neovolcánico

Se extiende en dirección este-oeste, a la altura de los paralelos 19° y 20° de latitud norte. Ha sido descrita recientemente como una faja volcánica en donde se encuentran diversos volcanes y rocas vol-cánicas asociados a fallas y fracturas. Se caracteriza por una cadena de sierras y lomeríos, constituida por la acumulación de lavas, brechas y cenizas vol-cánicas. Las tres Subprovincias que conforman el Eje Neovolcánico son: subprovincia Lagos y Vol-canes de Anáhuac, que se extiende del norte al este, aproximadamente 35 km. al oeste de Toluca, hasta Quimixtlaín. Limita al norte con las Subpro-vincias Carso Huasteco y Chiconquiaco; al este se prolonga hacia el estado de Veracruz y al sur con las Subprovincias Sierras Orientales, Sur de Puebla y Sierras y Valles Guerrerenses. En ella se localizan las tres mayores elevaciones del país: Citlaltépetl o Pico de Orizaba, que es compartido con el estado de Veracruz, Popocatépetl e Iztaclihuatl, que for-man parte de un sistema de topoformas denominado sierra volcánica con estratovolcanes. Otros sistemas en la región son: sierras volcánicas con lomeríos, llanuras, mesetas, vaso lacustre salino y el volcán Negro.

Subprovincia Chiconquiaco, que constituye el extremo este del Eje Neovolcánico. Se introduce en la entidad por sus bordes centro-este y noreste, en una superficie que corresponde al 2.15 % del territorio. Dominan los lomeríos asociados con lla-nuras, sierra volcánica, mesetas y una llanura aluvial (Demant 1978).

Subprovincia Sur de Puebla. Limita al noreste con las Subprovincias de Lagos y Volcanes de Aná-huac, al este con las Sierras Centrales de Oaxaca, al sur con la Cordillera Costera del Sur y al suroeste con las Sierras y Valles Guerrerenses. Es una región de rocas volcánicas, metamórficas y sedi-

mentarias. Los sistemas de topoformas que dominan son los de llanuras, valles, cañón típico, mesetas, sierras y lomeríos.

Provincia Sierra Madre del Sur

Limita al norte con la provincia del Eje Neovolcánico, al este con las provincias Llanura Costera del Golfo Sur y Cordillera Centroamericana y al sur y oeste con el Océano Pacífico. El origen de sus rasgos se debe a su relación con la placa de Cocos. Está representada por cinco Subprovincias:

Subprovincia Cordillera Costera del Sur. Está formada por una cadena de sierras que se extiende a lo largo de las costas michoacanas, guerrerenses y oaxaqueñas; se encuentra directamente en el sitio de subducción de la placa de Cocos. Colinda al oeste y norte con la subprovincia Sierras y Valles Guerre-renses, al noreste con la subprovincia Sur de Puebla y al oriente con la Mixteca Alta, la mayor parte de esta subprovincia corresponde esencialmente a la cuenca del río Atayac, uno de los más importantes afluentes del Balsas. Las sierras están surcadas por lomeríos. Subprovincia Mixteca Alta, que limita con las Subprovincias: Sur de Puebla, Sierras Centrales de Oaxaca y Cordillera Costera del Sur. Está constituida por una sierra de aluviones continentales anti-guos y rocas metamórficas; que se encuentra rodeada al este, oeste y norte por lomeríos escarpados.

Subprovincia Sierras y Valles Guerrerenses, compuesta por rocas calcáreas. Limita al norte con la Subprovincia Lagos y Volcanes de Anáhuac, al este con la Subprovincia Sur de Puebla, al sur con la Cordillera Costera del Sur al oeste con las Llanuras Morelenses. Conforma un sistema de topoformas de sierras, lomeríos, valle ramificado y cañón. Estas formas del relieve están constituidas de rocas calizas de edad cretácea. Subprovincia Sierras Centrales de Oaxaca, que se extiende desde el suroeste hasta la sierra de Oaxaca, con pendientes moderadas de rocas sedimentarias y volcánicas básicas, interrumpida por un valle árido que fisiográficamente es denominado “Valle de Laderas con Lomeríos”.

Subprovincia Sierras Orientales. Desciende desde la región de Orizaba, Veracruz, hasta Salina Cruz, Oaxaca. Se extiende al noreste de la cuenca de Tehuacán y se conforma por un sistema de topoformas de sierras bajas, sierras altas y valles (Fuentes 1972).
CLIMA

Miguel Ángel Valera Pérez, Cristóbal Arregui García y Edgardo Torres Trejo

El estado posee gran diversidad de climas, principalmente por los marcados cambios de altitud de su relieve: los climas templados son los que cubren la mayor parte del territorio, en segunda instancia los cálidos y en tercer lugar los semicálidos; el restante corresponde a los semiesecos, secos, semifríos y fríos (INEGI 2000).

En el norte, los climas cálidos de la vertiente oriental han propiciado el desarrollo de una comunidad vegetal exuberante como la selva alta perenifolia, la cual contrasta con los bosques de coníferas de las laderas occidentales de la sierra. En la zona del istmo, en las faldas de las elevaciones se distribuyen los bosques de coníferas; en la porción austral se encuentran la selva mediana subperenifolia y baja caducifolia, esta última es la de mayor distribución, además de los matorrales y chaparros que se adaptan a las condiciones de menor humedad ambiental (García 1988). Lo anterior se presenta debido a que es posible identificar la presencia de los siguientes 25 tipos de climas (Cuadro 1.1) de acuerdo a la clasificación de Köppen (McKnight y Hess 2000).

Esta gran variedad climática (Figura 1.3) se debe a factores tales como la latitud, la altitud, el relieve y la distribución de suelos y aguas, que al interactuar imprimen condiciones particulares a los elementos del clima, como los vientos, la temperatura y la precipitación (Ramos et al. 2008).

Vientos

Con respecto a la latitud, el estado se localiza en la zona intertropical, donde prevalecen los vientos alisos y temperaturas altas (>29° C) (INEGI 1987), condiciones que son modificadas por otros factores. De este modo, los vientos alisos, que en general viajan del noreste al suroeste, son humedos en esta región del país debido a su paso por el Golfo de México. Sin embargo, sólo producen altas precipitaciones en el noreste, este y sureste de la entidad como resultado de la orientación y altitud del relieve serrano que conforma esas áreas, el cual obliga al viento a ascender, por lo que se enfri, precipita y continúa su recorrido con menos humedad y produciendo una menor cantidad de lluvia en el resto del territorio; este último efecto es conocido como “sombra pluviométrica” u “orográfica”. La cantidad de lluvia y su distribución durante el año en las zonas serranas del norte, se debe también a la acción de ciclones tropicales que incrementan la humedad de los vientos a fines del verano y principios del otoño y de frentes fríos o nortes, que propician la precipitación en el invierno.

Temperatura

Las temperaturas son modificadas por la altitud, pues al aumentar ésta, disminuyen, de tal forma que los terrenos con menos de 1 000 msnm, como son los del norte y noreste, pertenecientes a la Llanura Costera del Golfo Norte y los correspondientes a los valles de los ríos Atoyac, Acatlán, Tehuacán y Petlapa, presentan temperaturas de 24° C o más, mientras que las áreas situadas por arriba de los 4 000 m de altitud tienen temperaturas medias anuales entre 2° y 4° C.

Precipitación

La precipitación y la temperatura son factores que se derivan directamente de los efectos climáticos (clima); el análisis de lluvias se basa en la información suministrada por la Carta de Climas. La información correspondiente permite determinar la siguiente distribución de los valores de precipitación en el estado de Puebla: en la parte norte se registran isoyetas con valores medios anuales de 4 250, 3 750, 3 250, 2 750, 2 250 y 1 750 mm; en el centro de 1750, 1250, 1100, 900 y 750 mm y hacia el sur de 650, 550, 450 y 350 mm.

En lo que respecta a las temperaturas medias anuales, se manifiestan de la siguiente manera: en la parte norte y suroeste se registran isotermas con valores medios anuales de 21, 23, 25, y 27 º C; en la parte centro del estado se registran temperaturas con valores de 11, 13, 15, 17 y 19 º C. Las temperaturas más frías se localizan en las regiones volcánicas y van de 0, 2, 3, 5, 7 y 9 º C.
Cuadro 1.1 Tipos y subtipos de clima presentes en el estado de Puebla.

<table>
<thead>
<tr>
<th>Clave</th>
<th>Tipos y Subtipos climáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Af(m)</td>
<td>Cálido húmedo con lluvias todo el año</td>
</tr>
<tr>
<td>Am(f)</td>
<td>Cálido húmedo con abundantes lluvias en verano</td>
</tr>
<tr>
<td>Aw2</td>
<td>Subtipo de mayor humedad dentro de los cálidos subhúmedos</td>
</tr>
<tr>
<td>Aw0(w)</td>
<td>Subtipo de menor humedad dentro de los cálidos subhúmedos</td>
</tr>
<tr>
<td>A(C)w1(w)</td>
<td>Subtipo de media humedad dentro de los semicálidos subhúmedos</td>
</tr>
<tr>
<td>A(C)w0(x)</td>
<td>Subtipo de menor humedad dentro de los semicálidos subhúmedos</td>
</tr>
<tr>
<td>(A)(C)w1(x)</td>
<td>Subtipo de media humedad dentro de los semicálidos subhúmedos</td>
</tr>
<tr>
<td>C(m) y C(m)(w)</td>
<td>Templados húmedos con abundantes lluvias en verano</td>
</tr>
<tr>
<td>C(w2)(w) y C(w2)</td>
<td>Subtipos de mayor humedad dentro de los templados subhúmedos</td>
</tr>
<tr>
<td>C(w1)(w)</td>
<td>Subtipos de humedad media dentro de los templados subhúmedos</td>
</tr>
<tr>
<td>C(w0)(w)</td>
<td>Subtipos de menor humedad dentro de los templados subhúmedos</td>
</tr>
<tr>
<td>C(E)(w2)(w) y C(E)(w2)</td>
<td>Subtipos de mayor humedad dentro de los semifríos subhúmedos</td>
</tr>
<tr>
<td>C(E)(w1)(w) y C(E)(w1)</td>
<td>Subtipos de menor humedad dentro de los templados subhúmedos</td>
</tr>
<tr>
<td>BS1(h)w(w)</td>
<td>Subtipo semiseco muy cálido</td>
</tr>
<tr>
<td>BS1bw(w)</td>
<td>Subtipo semiseco muy cálido</td>
</tr>
<tr>
<td>BSkw(w) y BS1k’w</td>
<td>Subtipos semisecos templados</td>
</tr>
<tr>
<td>BS0h’w(w)</td>
<td>Subtipo seco muy cálido</td>
</tr>
<tr>
<td>E(T)H</td>
<td>Frío</td>
</tr>
<tr>
<td>Af(m)</td>
<td>Cálido húmedo con lluvias todo el año</td>
</tr>
<tr>
<td>Am(f)</td>
<td>Tipo cálido húmedo con abundantes lluvias en verano</td>
</tr>
<tr>
<td>Aw2</td>
<td>Subtipo de mayor humedad dentro de los cálidos subhúmedos</td>
</tr>
<tr>
<td>Aw0(w)</td>
<td>Subtipo de menor humedad dentro de los cálidos subhúmedos</td>
</tr>
<tr>
<td>A(C)w1(w)</td>
<td>Subtipo de media humedad dentro de los semicálidos subhúmedos</td>
</tr>
<tr>
<td>A(C)w0(w)</td>
<td>Subtipo de menor humedad dentro de los semicálidos subhúmedos</td>
</tr>
</tbody>
</table>

El estado de Puebla es surcado por diversos ríos de importancia como el Atoyac, Nexapa, Pantepec, San Marcos, Nexapa – Acatlán, Ajajalpa, Apulco, Salado, Zempoala, Chichiquila, Mixteco, Acatlán, Tehuacán, Zapoteco y Coyolapa, también cuenta con presas como: Manuel Ávila Camacho, Necaxa, La Laguna (El Tejocotal), Tenango, Nexapa, La soledad, Boque-

RECURSOS HÍDRICOS

Cristóbal Arreguín García y Oscar Agustín Villarreal Espino Barro

El estado de Puebla es surcado por diversos ríos de importancia como el Atoyac, Nexapa, Pantepec, San Marcos, Nexapa – Acatlán, Ajajalpa, Apulco, Salado, Zempoala, Chichiquila, Mixteco, Acatlán, Tehuacán, Zapoteco y Coyolapa, también cuenta con presas como: Manuel Ávila Camacho, Necaxa, La Laguna (El Tejocotal), Tenango, Nexapa, La soledad, Boque-

Regiones hidrológicas

Dentro del territorio poblano se confrontan cuatro grandes Regiones Hidrológicas (RH): la RH 18 que cubre todo el suroeste y la parte centro, la RH 28
Figura 1.3 Climas del estado de Puebla (INEGI 2009)
que riega la zona sureste, la RH 27 que cubre en su totalidad la zona norte y la RH 26 que riega cuatro localidades del municipio de Zacatlán que colindan con el estado de Hidalgo y una parte del municipio de Honey. La entidad cuenta con 11 presas almacenadoras, 8 derivadoras y 40 bordos, que suman en conjunto una capacidad total de almacenamiento de 643 millones de metros cúbicos.

El tipo de drenaje observado en todas estas regiones es en general dendrítico, particularmente en la porción suroeste del estado, dentro de la región de Atoyac, aunque en algunas zonas existen diferencias relacionadas con el substrato geológico que las constituye. Dentro de la misma región hidrológica, en la zona centro, son notorios los patrones de avenamientos radiales y las cuencas cerradas que albergan cuerpos de agua (Cuenca de Oriental). Esto se debe a la existencia de varias estructuras geológicas y depósitos volcánicos de reciente formación. En las zonas norte y suroeste de la entidad, en las regiones Tuxpan-Nautla y Papaloapan respectivamente, los cursos de las corrientes muestran algunos trazos rectangulares que son reflejo de los plegamientos que afectaron estas regiones en el pasado geológico (Gobierno del estado de Puebla 2005).

Región Hidrológica (RH-18)

Río Balsas

Esta región es una de las más importantes del país; ocupa las zonas central y suroccidental del estado, se extiende desde Michoacán y alcanza una pequeña porción de Veracruz, donde está limitada por las elevaciones que circundan la Cuenca de Oriental-Perote, entre las que destacan la Caldera de los Húmedos, el volcán Pico de Orizaba, el Cofre de Perote y el volcán Atlitzin o Sierra Negra. Hacia el sur de estas montañas, el parteaguas oriental de la región se prolonga a lo largo de las serranías que constituyen el borde occidental de la cañada poblana-oaxaqueña. Al norte y al sur, la región se encuentra limitada por los parteaguas del Eje Neovolcánico y la Sierra Madre del Sur, respectivamente. Está subdividida en 10 cuencas; cuatro de ellas se encuentran parcialmente incluidas en territorio poblano: (A), Río Atoyac; (B), Río Balsas-Mezcalca; (E), Río Tlapaneco y (F), Río Grande de Amacuzac. Suman en conjunto el 59 % de la superficie estatal, aproximadamente.

El rasgo hidrográfico más sobresaliente de esta zona es el río Atoyac, que es además, la corriente más importante del estado; se forma a partir de la unión de los ríos San Martín o Frío, de Puebla y Zahuapan de Tlaxcala. El primero baja de la Sierra Nevada y el segundo de la sierra de Tlaxco (INEGI 1987). En la ciudad de San Martín Texmelucan, las aguas de esa corriente y algunos afluentes se aprovechan en las actividades agrícolas, domésticas e industriales. Esta porción se caracteriza por lo accidentado de su topografía y el grado de pendiente de los cauces de sus corrientes, que, sin control, pueden causar pérdidas en la agricultura. El Atoyac recibe las aportaciones de las corrientes permanentes de los ríos Mixteco, Nexapa y Tlapaneco. Al ingresar al estado de Guerrero, cambia su nombre al de río Mezcalca y posteriormente al de Balsas. El escurrimiento medio anual de los ríos Atoyac y Nexapa se estima en 458 millones de metros cúbicos.

Dentro de la cuenca “A” Río Atoyac se encuentra la zona denominada Llanos de San Juan, Cuenca Cerrada de Oriental o Región del Seco (INEGI 2000). Esta área es una vertiente interior de tipo “endorréica”, es decir, una zona carente de drenaje hacia el mar, donde no se han labrado cauces y en la que el escurrimiento de la precipitación pluvial, es con base en las diferencias de nivel (Tamayo 1996). La zona comprende los Municipios de Aljojuca, Oriental, San Nicolás Buenos Aires, San Salvador el Seco.
y Tepeyahualco (Gobierno del estado de Puebla 1988). La lluvia en los Llanos de San Juan drena principalmente hacia las lagunas saladas e intermitentes de Totolcingo (Tequesquitla) y El Salado, así como en los llamados axalapascos que son lagos cráter (*maars o diatremas*; son seis: Aljojuca, Tecuilapa, Alchichica, La Preciosa (Las Minas), Quechulac y Atexcac. Los axalapascos son únicos a nivel mundial, no solo por su origen y su belleza, sino por sus peces y anfibios endémicos (CONABIO 2009). El escurrimiento total de esta cuenca interior se estima en 80 millones de m³ (Tamayo 1996).

Región Hidrológica (RH-27) Tuxpan-Nautla

Se extiende en la Planicie Costera del Golfo Norte y parte de la vertiente este de la Sierra Madre Oriental; ocupa casi toda la parte norte del estado (24.6 % de la superficie de la entidad). El límite sur de la región está constituido por el parteaguas que forman las estribaciones más meridionales de la sierra Norte y que se extiende al noroeste de los poblados de Libreys y Cuyoaco, así como al sur de Zaragoza y Teziutlán, sobre la vertiente norte de la Caldera de los Húmedos. Desde esta zona la región se extiende hasta los estados de Veracruz e Hidalgo. En la entidad está representada por las cuencas (A), Río Nautla; (B), Río Tecolutla; (C), Río Cazones y (D), Río Tuxpan. Esta zona es la más lluviosa del estado: se registran precipitaciones de lluvia entre 1 500 a 3 000 mm al año; en el área de Cuetzalan se tienen medias anuales de más de 4 000 mm. La temperatura media anual, oscila desde 14° C en las partes más altas de la sierra, hasta 24° C en los dominios de la planicie costera.

Región Hidrológica (RH-28) Papaloapan

Abarca la zona sureste y parte del oriente; se extiende hacia el este de la Cuenca de Atoyac; ocupa las zonas de Quimixtlán Chichiquila, la cañada poblana-oaxaqueña y la sierra Mazateca. Está integrada por las cuencas (A), Río Papaloapan y (B), Río Jamapa, que en conjunto constituyen aproximadamente el 16 % de la superficie total estatal. El volumen estimado de escurrimiento anual es del orden de 3 116 millones de metros cúbicos (CONAGUA 1992), que representa el 28 % del escurrimiento virgen del estado. No exis-

...ten aportaciones de corrientes de estados vecinos y el volumen que escapa es muy reducido (Figura 1.5).

Hidrología subterránea

Entre sus riquezas naturales Puebla cuenta con pocos afluuentes superficiales de gran importancia; la economía del campo se centra fundamentalmente en el agua subterránea. El estado presenta una topografía montañosa y de lomeríos (65 %); el resto son zonas más o menos planas, donde es factible la extracción de agua subterránea.

La Comisión Nacional del Agua (CONAGUA), divide en cinco zonas geohidrológicas al estado: Valle de Puebla, Cuenca de Oriental, Tecamachalco, Atilco-Izúcar de Matamoros y Tehuacán (Cuevas 2007). Otras de menor importancia que las anteriores son las de Ixcaquixtla, Metlatoyuca y Atoyatempan. Las cinco grandes zonas geohidrológicas, contienen una o más áreas de explotación, separadas o no por pequeños parteaguas, que son alimentadas por diferentes zonas de recarga. Los materiales que conforman los acuíferos son por lo general de origen aluvial, que incluyen sedimentos cuaternarios no consolidados que consisten de gravas, arenas, limos y arcillas.

La extracción de agua en el estado es a través de pozos, norias, galerías filtrantes y manantiales; el agua extraída en la entidad se destina en aproximadamente un 80 % a la agricultura, en segundo lugar están los servicios públicos urbanos y domésticos con 15 %, 3.5 % para la industria y tan solo el 1.5 % restante para fines pecuarios. También existen aguas termales que alcanzan temperaturas que van de los 36° a los 90 °C, como en los manantiales de los Humeros, Chignahuapan e Izúcar de Matamoros.

Valle de Puebla

Se sitúa en la parte centro oeste del estado; se extiende entre las elevaciones de la Malinche y el Iztaccihuatl; hacia el norte limita con el estado de Tlaxcala y al sur abarca hasta los poblados de Santa Isabel Cholula y Totomehuacán aproximadamente. El valle comprende dos zonas de explotación: la primera de ellas es Atoyac-San Martín Texmelucan, que ocupa casi la totalidad del valle. La
Figura 1.5 Hidrología superficial: regiones, cuencas y subcuencas (INEGI 2009)
segunda zona de explotación corresponde al Atoyac, que incluye el área conurbada de la ciudad de Puebla y se extiende hacia el oeste hasta la localidad de Amozoc.

El acuífero del Valle de Puebla está formado geológicamente en su parte superior por materiales aluviales no consolidados, como son la grava, arena y arcilla, que en conjunto presentan una permeabilidad general media-alta a alta. La parte inferior está formada por basalto, toba y andesita fracturada, de varios cientos de metros de espesor, que están limitadas en la parte inferior por rocas calcáreas, consideradas como el basamento geohidrológico de la cuenca. La parte inferior del acuífero contiene agua sulfurosa en algunos sectores del sur y suroeste de la ciudad de Puebla. Estas fuentes pueden ser susceptibles de aprovechamiento mediante tratamiento (Flores-Márquez et al. 2006).

Cuenca de Oriental
La Cuenca de Oriental se localiza en la parte media-oriental de la entidad y se extiende hasta las poblaciones de Rafael Lara Grajales, Soltepec, Tla-chichuca, Guadalupe Victoria y Tepeyahualco, abarcando parte de los estados de Tlaxcala y Veracruz.

El material geológico que forma esta cuenca se basa en depósitos aluviales y lacustres, material piroclástico y derrames lávicos con posterior fracturamiento. En las partes bajas de la cuenca prevalecen los sedimentos, mientras que las rocas volcánicas predominan en el resto de la misma. En general, estos materiales son de alta permeabilidad, aunque existen algunos horizontes poco permeables. En la porción sur de la cuenca, la parte inferior del acuífero está formada por calizas arrecifales de la formación Orizaba.

Atlixco-Izúcar de Matamoros
Se localiza en la porción suroeste y ocupa los valles de estos municipios. De acuerdo a la Comisión Nacional del Agua (CONAGUA), sus límites van a lo largo de la llanura del río Nexapa, el valle de Chietla, Chiautla y Huehuetlán el Chico.

El acuífero está constituido por depósitos aluviales de alta permeabilidad; hacia el norte, predomina derrames lávicos de permeabilidad media; al sur, en las inmediaciones de Izúcar de Matamoros, se encuentran sedimentos lacustres y el piso del acuífero está formado por rocas metamórficas del complejo Acatlán.

Tecamachalco
Se sitúa en la parte centro-este del estado e incluye parte del distrito de riego Valsequillo, que se extiende hasta parte de Tehuacán y Nanahuatipan, en el extremo sureste del estado. Esta zona geohidrológica comprende los acuíferos de Tecamachalco, Palmar de Bravo y Esperanza.

El acuífero de Tecamachalco está formado en su parte superior por depósitos aluviales no consolidados como arenas, limos y arcillas. La permeabilidad general de los materiales varía de media a media-alta. En su parte inferior existen calizas arrecifales de alta permeabilidad secundaria. El basamento geohidrológico lo constituyen caliza arcillosa, lutita y arenisca casi impermeables (Flores-Márquez et al. 2006).

Tehuacán
Se localiza en la porción sureste, relacionándose con la cuenca de Tecamachalco. En su parte superior el acuífero está formado por depósitos aluviales con espesor que varía desde pocos metros hasta 50 m. La parte inferior está compuesta por clastos calcáreos, yesos y conglomerados. En el área de la ciudad de Tehuacán, la parte superficial del acuífero está constituida por travertinos muy porosos y permeables, con oquedades de gran tamaño, que alimentan a numerosas galerías filtrantes y a manantiales que descargan.

Zonas de veda
La CONAGUA es la institución encargada de controlar y reglamentar la extracción del agua subterránea, mediante el decreto de zonas de veda.

Estas zonas son áreas en las cuales la extracción del agua subterránea y la perforación de pozos con dicho fin se encuentra bajo control, lo que incluye la restricción e incluso la prohibición del aprovechamiento.

Todas las zonas de explotación descritas anteriormente se encuentran vedadas desde el año de 1950 debido a la excesiva extracción en la porción central del estado; estas áreas fueron ampliadas...
por el decreto del 15 de noviembre de 1967, publicado en el diario oficial, en el cual se declara “zona de veda para el alumbramiento de aguas en el subsuelo, en la zona meridional del territorio poblano”. En esta zona quedan incluidos la mayoría de los municipios localizados en el Valle de Puebla, zona de Atlixco-Izuácar de Matamoros y zona de Tecamachalco (Gobierno del estado de Puebla 1988).

SUELOS

José Adrián Saldívar Munive, Rafael Vicente Aguilera,
Víctor Tamariz Flores y José Antonio Ticante Rodríguez

Las condiciones ecológicas contrastantes en el estado han favorecido un mosaico edáfico variado con una diversidad de 21 unidades de suelos (Figura 1.6)

Su formación se debe a la acción combinada de diversos factores: clima, material parental, relieve, organismos y el tiempo. Considerando que estos factores influyen en la génesis de los suelos, se tienen en consecuencia diversos procesos de formación, entre los que sobresale: la meteorización, lixiviación, óxido-reducción, mezcla del suelo, calcificación y salinización (Sánchez 1980).

La clase textural media predomina con un 65%, que corresponde a 2 227 245 ha, distribuidas a lo largo de todo el territorio; le sigue la textura gruesa que ocupa el 20.5%, con 700 989 ha, las cuales se distribuyen sobre todo en el centro y por último la textura fina con el 12.9% correspondiendo a 442 608 ha., distribuidas en partes del norte y sur del territorio poblano.

Los suelos arcillosos presentan drenaje interno bajo, en tanto que los de textura media poseen drenaje moderado y los de textura gruesa se consideran bien drenados.

Desde el punto de vista orgánico, la fertilidad de los suelos agrícolas varía de media a baja; el manejo al que han sido sujetos los ha empobrecido. En general hay disponibilidad de elementos esenciales, pero en el caso de Andosoles existe una retención del fósforo aprovechable por las plantas. Actualmente la mayor parte de los suelos agrícolas del estado son continuamente fertilizados en favor de obtener cosechas de forma regular (Werner 1978).

Los tipos de suelo más abundantes son los Lep- tosoles, Regosoles, Phaeozems y Andosoles (WRB 2000), que en conjunto ocupan el 69.1 % del territorio poblano, el 24.2 % es ocupado por los Luvísoles, Vertisoles, Arenosoles, Cambisoles, Fluvisoles, Calcisoles y Durisoles y el restante 5.3 % por unidades poco representativas en extensión como Chernozems, Solonchaks, Acrisoles, Umbrisoles, Nitisoles, Gipsisoles, Kashañozems, Planosoles, Solonetz y Gleysoles; el 1.5 % restante lo conforman Zonas Urbanas y Cuerpos de Agua para sumar el 100 % de la superficie estatal (Cuadro 1.2).

A continuación se describe la distribución de los cuatro tipos de suelos más abundantes en área ocupada dentro del estado (INEGI 2000).

Leptosoles - Se localizan en sierras y lomeríos de la Sierra Madre Oriental hacia Huehuete y Ixtacamaxtitlán, en la Sierra Madre del Sur hacia Santa María del Monte y Caltepec.

Regosoles - Suelos poco evolucionados en su perfil, que constituyen la etapa inicial de formación de un gran número de ellos. Se localizan en extensas zonas de la Sierra Madre del Sur hacia Chiautla de Tapia, en el Eje Neovolcánico hacia Zacatepec y en la Llanura Costera del Golfo Norte hacia Metaltoya y Tenampulco (Buol et al. 1983).

La vocación actual de estos suelos es variada y está relacionada con la diversidad ecológica que se presenta; algunos sustentan pastizales cultivados e inducidos, agricultura de temporal y en algunas zonas, bosques de pino y vegetación secundaria de selva baja caducifolia (Figura 1.7).

Phaeozems - Su distribución es muy amplia, encontrándose en la Llanura Costera del Golfo Norte hacia Jalpan, en el Eje Neovolcánico hacia Chignahuapan Oriental, Santa María del Monte y Cholula, y en sitios muy localizados de la Sierra Madre del Sur.

Estos suelos están influidos en su formación por las características climáticas, mismas que determinan la cobertura vegetal que favorece los procesos de formación de humus. Tienen una fertilidad natural elevada y producen buenas cosechas, las que pueden aumentarse si se realizan estudios más detallados al respecto. Tradicionalmente son dedicados a la agricultura de temporal, aunque también en ellos se ubican pastizales cultivados y algunos tipos de vegetación secundaria.
CAPÍTULO 1 • MEDIO FÍSICO

Figura 1.6 Suelos: Unidades de suelo del estado de Puebla (INEGI 2009)
Las Unidades de Suelo clave y superficie (INEGI, 2006), se muestran en el Cuadro 1.2.

<table>
<thead>
<tr>
<th>Clave</th>
<th>Suelo principal</th>
<th>km²</th>
<th>%</th>
<th>hectáreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>Leptosoles</td>
<td>11629</td>
<td>33.97</td>
<td>1 162 859.34</td>
</tr>
<tr>
<td>RG</td>
<td>Regosoles</td>
<td>5410</td>
<td>15.80</td>
<td>540 954.17</td>
</tr>
<tr>
<td>PH</td>
<td>Phaeozems</td>
<td>3602</td>
<td>10.52</td>
<td>360 244.19</td>
</tr>
<tr>
<td>AN</td>
<td>Andosoles</td>
<td>3006</td>
<td>8.78</td>
<td>300 603.30</td>
</tr>
<tr>
<td>LV</td>
<td>Luvisoles</td>
<td>2373</td>
<td>6.93</td>
<td>237 286.67</td>
</tr>
<tr>
<td>VR</td>
<td>Vertisoles</td>
<td>1910</td>
<td>5.58</td>
<td>190 970.33</td>
</tr>
<tr>
<td>AR</td>
<td>Arenosoles</td>
<td>1345</td>
<td>3.93</td>
<td>134 543.83</td>
</tr>
<tr>
<td>CM</td>
<td>Cambisoles</td>
<td>1081</td>
<td>3.16</td>
<td>108 103.51</td>
</tr>
<tr>
<td>FL</td>
<td>Fluvisoles</td>
<td>543</td>
<td>1.59</td>
<td>54 302.34</td>
</tr>
<tr>
<td>CL</td>
<td>Calcisoles</td>
<td>520</td>
<td>1.52</td>
<td>52 038.02</td>
</tr>
<tr>
<td>DU</td>
<td>Durisoles</td>
<td>492</td>
<td>1.44</td>
<td>49 245.20</td>
</tr>
<tr>
<td>ZU</td>
<td>Zona Urbana</td>
<td>480</td>
<td>1.40</td>
<td>47 960.20</td>
</tr>
<tr>
<td>CH</td>
<td>Chernozems</td>
<td>441</td>
<td>1.29</td>
<td>44 086.86</td>
</tr>
<tr>
<td>SC</td>
<td>Solonchaks</td>
<td>354</td>
<td>1.03</td>
<td>35 394.80</td>
</tr>
<tr>
<td>AC</td>
<td>Acrisoles</td>
<td>277</td>
<td>0.81</td>
<td>27 728.52</td>
</tr>
<tr>
<td>UM</td>
<td>Umbrisoles</td>
<td>270</td>
<td>0.79</td>
<td>27 023.35</td>
</tr>
<tr>
<td>NT</td>
<td>Nitosoles</td>
<td>163</td>
<td>0.48</td>
<td>16 318.45</td>
</tr>
<tr>
<td>GY</td>
<td>Gipsisoles</td>
<td>125</td>
<td>0.37</td>
<td>12 478.95</td>
</tr>
<tr>
<td>KS</td>
<td>Kastañozems</td>
<td>118</td>
<td>0.34</td>
<td>11 811.66</td>
</tr>
<tr>
<td>PL</td>
<td>Planosoles</td>
<td>24</td>
<td>0.07</td>
<td>2 356.72</td>
</tr>
<tr>
<td>SN</td>
<td>Solonetz</td>
<td>20</td>
<td>0.06</td>
<td>1 969.53</td>
</tr>
<tr>
<td>GL</td>
<td>Gleysoles</td>
<td>5</td>
<td>0.01</td>
<td>523.77</td>
</tr>
<tr>
<td>H2O</td>
<td>Cuerpo de Agua</td>
<td>48</td>
<td>0.14</td>
<td>4 837.96</td>
</tr>
<tr>
<td>SUMA</td>
<td></td>
<td>34 236</td>
<td>100.00</td>
<td>3 423 641.63</td>
</tr>
</tbody>
</table>

Andosoles - Suelos formados a partir de cenizas volcánicas que se distribuyen en extensas zonas donde ha habido una actividad volcánica reciente como lo es el Eje Neovolcánico, especialmente hacia los grandes volcanes que colindan la entidad, tales como el Popocatépetl, Iztaccíhuatl, Citlaltépetl y La Malinche; también en algunas partes de la Sierra Madre del Sur que han sido cubiertas por cenizas volcánicas como en las cercanías de Cuetzalan del Progreso y Rafael J. García.

Desde el punto de vista químico, estos suelos presentan el problema de la retención o fijación de fósforo, lo que dificulta la absorción de este elemento por las plantas y en consecuencia problemas en su desarrollo (Valera 1993).

CONCLUSIÓN

La descripción del medio físico aborda una serie de problemáticas asociadas con el relieve, topografía y
lo inaccesible que pueden ser algunos sitios del estado para acceder a un crecimiento económico, social y cultural homogéneo, esto aunado a las condiciones particulares de clima y suelo que promueven en algunos casos actividades importantes para el estado como la agricultura y la ganadería, las que en ciertas regiones se ven favorecidas y en algunas otras se encuentran limitadas; además, de acuerdo a las regiones hidrológicas se observa que la planeación y el diseño de obras de captación puede mejorar el nivel socio-económico de las poblaciones distribuidas a lo largo y ancho del estado.

Figura 1.7 Regosoles en el municipio de Tlachihuca, Valle de Serdán, Puebla. (Foto: J. Adrián Saldaña M. 2007)

Estudio de caso 1.1
Región socioeconómica II Teziutlán, Puebla
Miguel Ángel Valera Pérez y José Adrián Saldaña Munive

La región II Teziutlán, Puebla, fue definida por la CONABIO como Región Prioritaria para la Conservación (RTP-105), debido a la existencia de bosques mesófilos de montaña y de selva alta perennifolia (Arriaga et al. 2000). Se localiza entre las coordenadas 19° 46’ 23” y 20° 11’ 55” latitud norte y 97° 09’ 17” y 97° 38’ 36” longitud oeste, con una superficie aproximada de 5 937 km², y abarca los municipios de Acatenango, Atempan, Ayotozco de Guerrero, Chignautla, Cuetzalan del Progreso, Hueyapan, Hueytamalco, Huitzilan de Serdán, Jonutla, Nauzontla, Tenampulco, Tetela de Ocampo, Tenango de Ávila Castillo, Teziutlán, Tlatlauquitepec, Tuzamapan de Galeana, Xicotetelco, Xochiapulco, Xochitélan de Vicente Suárez, Yaonáhuac, Zacapoaxtla y Zoquipan.

Los estudios edáficos realizados en esta zona son numerosos y han permitido conocer la dinámica y capacidad productiva de la región.

Los primeros estudios realizados en suelos de la Zona Baja del Plan de Zacapoaxtla, consistieron en determinar sus propiedades físicas y químicas y corroborar la necesidad de darles un manejo diferente con el fin de mejorar su estructura y así maximizar su explotación (Lozano et al. 1983 y Hernández 1984). En un estudio posterior se probó la adaptación y respuesta a la fertilización química del maíz V-524 en la misma zona, encontrando buena adaptación de esta variedad (Calderón et al. 1984). Al mismo tiempo se evaluó la fertilidad de suelos volcánicos en praderas de la región de Teziutlán, encontrando que el principal limitante lo constituye la disponibilidad del fósforo, (Zárate 1986). En el mismo año se obtuvo información básica sobre suelos de la región, derivados de origen volcánico, dando inicio a su caracterización al realizar el inventario de suelos de Teziutlán, (Valera 1986a). Sucesivamente, al estudiar suelos del Municipio de Zoquipan, se concluyó que la fracción que más contribuye a la Capacidad de Intercambio Catiónico (C.I.C.) es la orgánica, con un 61 % (Peregrina 1986). Dos años después se realizó el levantamiento fisiográfico de la zona de “Los Oyameles”, en la región de Teziutlán, y se concluyó que el cambio de uso de suelo y la tala excesiva de los bosques generan una explotación irracional del recurso y con ello su...
acelerada erosión y degradación (Valera et al. 1984; 1986b y 1987; Lara et al. 1989). De modo paralelo a estos estudios, se realizó la caracterización física de suelos de origen volcánico del municipio de Tlatlauquitepec y se demostró que presentan condiciones físicas adecuadas para su uso agropecuario o forestal, pero con un alto riesgo de erosión hídrica (Saucedo et al. 1989; Saucedo 1990). Asimismo, se elaboró un inventario de suelos de la zona Zacapoaxtla-Cuetzalan, destacando particularmente las relaciones entre Andosoles y Luvisoles (Tobón 1990). También se realizó la caracterización física y química de suelos con fines de clasificación y uso potencial de la zona de Zautla-Tenexcatitlóyan, en la región de Teziutlán, mostrando que menos del 50% de éstos presentaron un uso acorde con el potencial propuesto; también se pudo observar que la vegetación en la zona ha sido sumamente perturbada (Lara et al. 1992). Como resultado del proyecto “Evaluación del Recurso Suelo de la Región de Teziutlán” se estableció la relación entre la composición mineralógica de la fracción arcilla y las características fisicoquímicas más importantes de los Andosoles (Valera 1993; Valera et al. 1994; Valera y Aguilera 1995). También se realizó un estudio comparativo de la transformación de materia orgánica en sustancias húmicas: ácidos húmicos, ácidos fúlvicos y huminas, que contribuyó al conocimiento del humus en agrosistemas cafetaleros, y de bosques autóctonos en la Sierra Norte del estado de Puebla (Ticante 2000). En el Municipio de Zoquiapan, para contribuir al conocimiento sobre manejo y productividad de praderas artificiales en una zona semi-cálida húmeda del estado, se seleccionó la asociación que por su rendimiento, calidad nutritiva y composición botánica se aclimataría mejor, presentando mejor respuesta y mayor eficiencia en la producción de materia: seca Ferrer (Cynodon dactylon) / Leucaena (Leucaena leucocephala) y Estrella (Cynodon plectostachyus) / Leucaena, con cualidades favorables como forraje (Saldaña 2001).

Del trabajo titulado “Los deslizamientos de Teziutlán” por Mitre-Salazar et al. 2002, el cual es una crónica geológica del desastre a la luz del proyecto Puebla-Panamá, se elaboró la cartografía de riesgo geológico por deslizamientos, instrumento básico para la prevención de futuros desastres y para la corrección de problemas ambientales. En el trabajo “Caracterización de elementos geológicos, socioeconómicos y factores detonantes que conducen al desarrollo de desastres en la subcuenca del Río Apulco, Sierra Norte de Puebla”, se mostró que la interacción entre tres provincias geológicas y fisiegográficas proporcionan condiciones favorables para originar deslizamientos, bajo la acción de precipitaciones extremas combinadas con elementos sociales como alta marginalidad, pobreza extrema y falta de ejecución de programas de desarrollo en la zona, así como falta de conocimiento del fenómeno por parte de las autoridades (Castillo-Román et al. 2002). En el mismo año, con el trabajo titulado “Instabilidad de laderas”, que se desarrolló en la comunidad de Zapotitlán de Méndez, en la Sierra Norte del estado de Puebla, se mostró que los sitios que presentaron deslizamientos de laderas e inundaciones ocurrieron por precipitaciones pluviales de los meses de septiembre y octubre de 1999 (Cuanalo y Melgarejo 2002).

También se realizó la evaluación de los recursos suelo y agua del municipio de Xochitlán de Vicente Suárez y se observó que se encuentran sometidos a diferentes factores de degradación ambiental, por lo que requieren un programa de manejo adecuado que conduzca a su uso sustentable (Tenorio 2003).

En el artículo “Procesos de remoción en masa y riesgos asociados en Zacapoaxtla, Puebla”, se señala que el relieve montañoso favorece la ocurrencia de estos procesos; además se corroboró que las condiciones que se manifestaron en octubre de 1999 fueron intensas lluvias ocasionadas por la tormenta tropical número 11, afectando a Zacapoaxtla, junto a municipios como Teziutlán, Totomoxtlá y Zapotitlán de Méndez (Borja y Alcántara 2004). Con el objetivo de relacionar propiedades químicas de suelos de carga variable con la degradación ambiental a la que han sido sometidos y mediante el uso de técnicas estadísticas de análisis multivariado, se demostró que los parámetros para evaluar la degradación del suelo fueron adecuados y se encontró que las diferencias con respecto al cambio de uso del suelo y degradación ambiental se presentaron entre los suelos agrícola
y forestal (Moreno et al. 2004). Al mismo tiempo, se estudiaron suelos de sistemas agroforestales para el cultivo del café, en el municipio de Xochitlán de Vi- cente Suárez, encontrando que la diversidad del dosel influye en la producción y calidad del café. Los siste- mas que conservan la estructura natural del bosque son el sistema de Jardín de Café y el Rusticano, con tasas bajas de descomposición de materia orgánica, a diferencia del sistema de cultivo de café sin sombra o a Cielo Abierto, con tasas de mineralización muy altas (Valera et al. 2004).

En el trabajo titulado: “Deforestación-erosión-in- estabilidad de laderas: Un enfoque de modelación geomorfológico, desarrollado al sur del Municipio de Tlatlauquitepec en la Sierra Norte del estado de Puebla”, se analizaron los procesos erosivos como resultado de la deforestación, explicando procesos de inestabilidad de laderas para esta área, como consecuencia de la deforestación y la erosión (Al- cántara 2005).

En el trabajo “Usos y destinos de los suelos en la región de Cuetzalan, Puebla, México”, se establece que los suelos corresponden a condiciones de monta- ña de carácter intertropical que favorecen el des- arrollo de cultivos templados y tropicales, que contribuyen a la erosión del suelo (Alvarado et al. 2006).

LITERATURA CITADA

2004: Sistema Fisiográfico DGGTENAL. Escrito de la Subdirección de Actualización de Recursos Naturales: “Las Provincias Fisiográficas de México y sus Subdivisiones”.

2009. Carta Topográfica, CARTA de Cimas, Escala 1:1 000 000.

2009. Conjunto de Datos Vectorial Edafológico, Escala 1:250 000 Serie II

Valera, M. A. 1993. Fisicoquímica y Mineralogía de Andosoles de la región de Teziutlán, estado de Puebla. Tesis de Maes- tría en Edafología, UNAM.

CAPÍTULO 2

Iglesia de Nuestra Sra. de los Remedios, sobre la Pirámide de Cholula; en el fondo se observa el Volcán Popocatépetl.
Foto: Oscar Villareal.
CAPÍTULO 2
MEDIO SOCIOECONÓMICO

Coordinadores de capítulo:
Ricardo Pérez Avilés y Salvador Romero Castañón

INTRODUCCIÓN
Ricardo Pérez Avilés y Salvador Romero Castañón

Para comprender el impacto de las actividades humanas sobre los sistemas naturales es necesario examinar la dinámica de la población y los factores sociales, políticos y económicos que han orientado su distribución y su acción sobre el territorio. Son aspectos elementales que se considerarán en este capítulo.

La población, la cultura, la política y la economía se relacionan con la biodiversidad porque son los elementos de mediación en la relación entre la sociedad y la naturaleza. Medio ambiente y desarrollo están ligados (PNUMA 2002). Cada uno de estos aspectos adquiere rasgos distintivos según los espacios físicos y sociales, así como por la historia de su sociedad. Las formas que han adoptado en el caso poblano se describen brevemente en este trabajo.

Puebla es una de las entidades federativas fundadoras de la Primera República Federal Mexicana, su historia es larga y trascendente en la dinámica nacional, en la de la región central de México y en la de su propio desarrollo. Pero su situación no ha escapado de la marcha del país y es un claro ejemplo de lo que acontece a nivel nacional.

Puebla, asentada en un espacio biodiverso del centro del país, se ubica en el séptimo lugar nacional en este renglón (Ayala R. 2001); por eso también su diversidad cultural es significativa. Esta riqueza biológica y social lamentablemente se ha ido destruyendo en cuanto a su diversidad. En la entidad poblana el 30.8 % de su superficie se ha clasificado como de conservación con uso restringido y el 43 % se propone como superficie en restauración, por haberse usado de manera intensa en actividades agrícolas y pecuarias (SEMARNAP 2000). Casi tres cuartas partes del territorio poblano presentan severos problemas para su aprovechamiento; en ello han tenido que ver las políticas públicas, la organización administrativa, el aumento de la población y sus características, un modelo de desarrollo económico sin planeación que ha descansado en una industrialización no sustentable, la utilización de tecnologías duras con un alto consumo de energía, una agricultura y ganadería poco racional, y el modelo de consumo predominante. Todo ello hace que hoy se reconozca la presencia de graves problemas ambientales que inciden en el funcionamiento del ecosistema local y global (Garrido s/f).

El deterioro de los ecosistemas de larga historia en Puebla, se hace visible recientemente, en especial a partir de la urbanización que acompaña a la industrialización, que en el país y en el caso poblano en particular, es contundente a partir de 1960, década en la que el impacto de la actividad humana sobre el medio natural se comienza a tornar grave para el bienestar de los poblanos y para el funcionamiento de sus ecosistemas.

SOCIEDAD Y POLÍTICA
Ma. Agostina Costa Genozza, Marycarmen García Escalona, Ricardo Pérez Avilés, Salvador Romero Castañón, Margarita Romero Centeno y José Silvestre Tolstoy Tlamani

La sociedad y su organización política son factores de presión para la biodiversidad; en el caso de México y particularmente de estados como Puebla, destaca la excesiva división política del territorio en 217 municipios que se ha convertido en un impedimento para la instrumentación de políticas públicas integrales para el manejo de ecosistemas.
El análisis de este eje es de suma importancia, pues las respuestas institucionales para solucionar la problemática ambiental deberán surgir de la efectiva comprensión de las relaciones político sociales con el medio ambiente.

Organización política y gobierno

El estado de Puebla fue creado con la promulgación de la Constitución Federal de los Estados Unidos Mexicanos de 1824, como uno de los 19 estados de la Primera República Federal Mexicana (Constitución Federal 1824). Como todos los estados que actualmente conforman los Estados Unidos Mexicanos, es un estado libre y soberano, porque tiene capacidad de formular sus propias leyes y elegir a sus gobernantes. Al mismo tiempo tiene representación en el Congreso de la Unión (Constitución Política del Estado Libre y Soberano de Puebla 2009).

El ejercicio del poder político en el estado está dividido en tres entidades: el poder ejecutivo, el legislativo y el judicial. Cada uno tiene competencias propias y son autónomos entre sí (Constitución Política del Estado Libre y Soberano de Puebla 2009).

El Poder Ejecutivo es ocupado por el Gobernador del estado. Se elige por medio de sufragio universal de todos los ciudadanos mexicanos que residen en el territorio de la entidad y están registrados en el Padrón Federal Electoral; su mandato dura seis años, a partir del 1° de febrero del año siguiente a aquél en que se verifica la elección. De acuerdo con la legislación federal no existe la reelección.

El Poder Legislativo es encarnado por el Congreso del estado de Puebla que tiene la facultad de promulgar las leyes específicas con vigencia en el estado, reformar las existentes o derogar las que se consideren obsoletas. El congreso poblano está conformado por 41 diputados que se eligen para ejercer el cargo por tres años. De estos diputados, 26 son electos por voto directo en los distritos electorales locales en que se divide la entidad y los restantes son nombrados por representación proporcional (Constitución Política del Estado Libre y Soberano de Puebla 2009).

El ejercicio del Poder Judicial está depositado en el Tribunal Superior de Justicia del Estado de Puebla (TSJEP), en la Junta de Administración de Justicia del Estado de Puebla, en los juzgados Cíviles, Familiares, Penales, Especializados en Adolescentes, Municipales, de Paz, Supernumerarios e Indígenas. Entre las atribuciones de estas instituciones encargadas de la administración de la justicia se encuentra la de decidir en controversias penales, civiles y familiares dentro del ámbito de la competencia señalados por las leyes poblana y federales. El TSEJP es un órgano colegiado compuesto por magistrados que sólo pueden ser removidos por el Congreso del Estado. Con el propósito de descentralizar la administración de justicia en la entidad, el territorio poblano se organiza en 22 distritos judiciales. Además, se ha dispuesto la creación de seis juzgados indígenas en las zonas con mayor concentración de población indígena en el territorio (Ley Orgánica del Poder Judicial 2002).

Estos poderes son los que están encargados de generar los mecanismos, leyes y normas para planear y dirigir la actividad de los pobladores en relación con el medio ambiente y vigilar su cumplimiento y aplicación. De sus políticas, planes y programas depende la conservación de la biodiversidad en Puebla, aspecto que habrán de mejorar ante el deterioro y agotamiento de esta riqueza natural.

Geografía de Puebla y división territorial

El estado de Puebla se localiza en la región central de México, al oriente de la capital de la república. Su territorio está lleno de contrastes, aunque las cañadas y las serranías son una constante en la mayor parte de él.

Puebla ocupa la posición 21 entre las 32 entidades federativas por su superficie de 34 290 km², lo que significa que sólo posee el 1.8 % de la superficie del país (INEGI s/f (1)). Limita al norte con Hidalgo; al este, con Veracruz; al sur, con Oaxaca y Guerrero y al poniente con los estados de Morelos, México, Tlaxcala e Hidalgo. La mayor parte del territorio poblano se encuentra en el Eje Neovolcánico (INEGI s/f (1)).

Puebla está subdividido en 217 municipios; entre las entidades federativas mexicanas ocupa el segundo lugar por el número de estas subdivisiones territoriales (Gobierno del Estado de Puebla,
s/f), lo que implica una compleja administración del territorio. Cada municipio es gobernado por un ayuntamiento, conformado por el presidente municipal y el cabildo del municipio. Los presidentes municipales son elegidos cada tres años por los ciudadanos residentes en el municipio y registrados en el padrón electoral. El cabildo de cada municipio es integrado por un número determinado de regidores y síndicos, elegidos también para un período de tres años de un conjunto de listas de candidatos registradas por los partidos políticos ante el Instituto Electoral del Estado (Constitución Política del Estado Libre y Soberano de Puebla 2009).

Población

A la población se le ha ubicado como factor de presión en la biodiversidad, sin embargo también en ella está la solución de su preservación y conservación, tanto en la población urbana como por medio de programas de educación ambiental permanentes pueden cambiar sus hábitos de consumo y su relación con la naturaleza, como en la población indígena y campesina, que en el caso poblano aún conserva una estrecha relación entre población habitante de lenguas indígenas y biodiversidad conservada (Boege Schmidt 2006).

La principal presión ambiental que representa la población obedece a la forma de urbanización y a su sistema de transporte individualizado; para el 2005 se tiene registrado un parque vehicular de 865 989 unidades en el estado de Puebla y para la Zona Metropolitana del Valle de Puebla 486 785 vehículos, de los cuales el 88 por ciento corresponden a unidades registradas en el municipio de Puebla y el 12 por ciento restante a los Municipios de esta zona: Amozoc, Coronango, Cuautlancingo, San Andrés Cholula y San Pedro Cholula (SEMARNAT s/f).

Población, sexo y tasa de crecimiento

Puebla representa la quinta entidad más poblada del país; contaba en 2005 con 5 383 133 habitantes (INEGI 2005 b), cifra que representó el 5.2 % del total nacional. De esta población, 2 804 469 fueron mujeres y 2 578 664 hombres, es decir el 52.09 % y el 47.91 % respectivamente: por cada 100 de ellas había 92 hombres. Esta relación denota una menor proporción de hombres que la mostrada a nivel nacional, debido seguramente a un patrón de emigración masculina más elevado que el promedio general en el país.

El ritmo de crecimiento poblacional observado entre los años 2000 y 2005 (INEGI 2008a) alcanza una tasa de 1 %, es decir, la población de la entidad creció a un ritmo de una persona por cada 100 durante cada uno de los cinco años del periodo. La tasa de crecimiento disminuyó notablemente desde la década de los noventa, pues si se compara con el quinquenio comprendido entre 1990 y 1995, que presentó un valor de 2.0 %, se observa un descenso considerable debido principalmente a que en la entidad comenzó a emigrar más población de la que recibía. En resumen, siguiendo la tendencia nacional, la tasa de crecimiento promedio anual de la población del estado ha descendido, de 2.1 % en el periodo 1990-2000, al 1.0 % para el periodo 2000-2005 (Cuadro 2.1).

Población y edad

La población del estado es muy joven, ya que para el año 2005 el 33.2 % de los habitantes (1 789 987), tenía catorce años o menos; entre los 15 a los 64 años se encontraba el 58.9 % de la población, es decir 3 171 736 de habitantes y las personas de 65 años o más, que eran 306 994 habitantes, sólo representaban el 5.7 %. Así que las edades más productivas económicamente alcanzaron tres puntos porcentuales menos que el promedio observado en el país, que fue del 63.2 % (INEGI 2005 b).

En el grupo de los 15 a los 64 años, los hombres con relación a las mujeres mostraba desventaja numérica, al representar el 27.4 % y el 31.4 % respectivamente del total de la población.

La población de 15 a 64 años, en edad productiva, es menor en las regiones de mayor migración, como es el caso de los municipios donde el crecimiento es reducido porque la migración de la población es mayor que la llegada de nuevos habitantes y por una baja en la natalidad. En esta situación se encuentra la mayor parte de los municipios de la entidad, pero principalmente los ubicados en la región de la Mixteca, al sur del estado (Figura 2.1). En conjunto, en estos
Figura 2.1 Tasa de crecimiento poblacional por municipio, Puebla 2000-2005
Fuente: INEGI. XII Censo General de Población y Vivienda, 2000, y II Conteo de Población y Vivienda, 2005. Elaborado por INEGI, Puebla
municipios que decrecen o que a lo sumo alcanzan un crecimiento de 1.5 %, la población entre 15 y 64 años representa el 57 %; el porcentaje del resto de grupos de la población se establece así: 36.2 % de niños y adolescentes y un 6.7 % de ancianos.

Localidades, municipios y población
El total de localidades en donde se asienta la población de la entidad es de 6 348 (INEGI 2005 b), distribuyéndose bajo un patrón de concentración-dispersión poblacional, es decir, un número reducido de grandes ciudades con una alta densidad de población y un gran número de pequeñas localidades con bajas densidades de población, distribuidas a lo largo de todo el espacio poblado. Este patrón de concentración-dispersión trae consigo intensidades distintas de densidad poblacional, (definida como el número de habitantes por km²).

Los municipios de las regiones más urbanizadas tienen hasta más de 2 000 habitantes por km², como son el caso del municipio de Puebla con 2 834 hab/km² o el de San Pedro Cholula con 2 223 hab/km². En cambio, existen municipios cuya población está más dispersa y sus asentamientos no rebasan los 1 300 habitantes, presentando densidades poblacionales de menos de 10 habitantes por km². Como ejemplo están los casos de Axutla, Cohetzala, Xicotlán y Chila de la Sal, ubicados en la región Mixteca al suroeste del estado.

Las localidades no se distribuyen uniformemente: el 7 % de los municipios concentra el 26 % de las localidades, es decir, que tan sólo 16 municipios (entre ellos Chignahuapan, Cuetzalan, Atlixco, Izucar, Ixtacamaxtitlán) concentran 1 698 localidades.

En el 2005 cinco municipios aglutinaban el 39.1 % de los habitantes: más de un tercio de la población en torno a las ciudades de Puebla, Tehuacán y San Martín Texmelucan (Cuadro 2.2). La región de Tehuacán era la de crecimiento más acelerado con una tasa de 2.2 % para el conjunto de municipios ubicados en esta zona, aunque la más poblada era y es la ciudad de Puebla y los 12 municipios conurbados (Amozoc, Coronango, Cuautlancingo, Domingo Arenas, Huejotzingo, Juan C. Bonilla, Puebla, San Andrés Cholula, San Martín Texmelucan, San Miguel Xoxtl, San Pedro Cholula y Tlatenango) (SEDESOL 2003).

En el espacio no comprendido en estas tres regiones, el 31.6 % de la población restante se distribuye en ciudades de tamaño medio entre 15 000 y 99 999 habitantes y el 29.40 % de la población en pequeñas localidades de menos de 2 500 habitantes, dispersas a lo largo y ancho de la entidad. Sin embargo la población que vive en estas localidades muy pequeñas ha empezado a disminuir en términos absolutos a un ritmo de -0.31, es decir, por cada 1 000 habitantes se redujeron tres cada año en el quinquenio 2000-2005 (INEGI 2001 a, INEGI 2005 b).

De esta manera, para el 2005, de los 5 383 133 poblados, el 29.40 % estaba en zonas rurales y el 70.60% se concentraba en las zonas urbanas del estado (INEGI 2005 b).

Cuadro 2.1 Población total del estado de Puebla y tasa de crecimiento media anual (1970-2005).

<table>
<thead>
<tr>
<th>Año</th>
<th>Población</th>
<th>Periodo</th>
<th>Tasa de crecimiento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>2 508 226</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1980</td>
<td>3 347 685</td>
<td>1970-1980</td>
<td>2.9</td>
</tr>
<tr>
<td>1990</td>
<td>4 126 102</td>
<td>1980-1990</td>
<td>2.1</td>
</tr>
<tr>
<td>1995</td>
<td>4 624 365</td>
<td>1990-1995</td>
<td>2.0</td>
</tr>
<tr>
<td>2000</td>
<td>5 076 686</td>
<td>1990-2000</td>
<td>2.1</td>
</tr>
<tr>
<td>2005</td>
<td>5 383 133</td>
<td>2000-2005</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fuente: INEGI. Censos de población y vivienda, varios años; para el año 2005.
II Censo de población y vivienda 2005.
Cuadro 2.2 Municipios con mayor concentración de población en el estado de Puebla (2000 y 2005).

<table>
<thead>
<tr>
<th>Municipio</th>
<th>2000</th>
<th>Porcentaje</th>
<th>2005</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de Puebla</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puebla</td>
<td>26.0</td>
<td>27.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tehuacán</td>
<td>4.5</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Martín Texmelucan</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlixco</td>
<td>2.3</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro Cholula</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resto de Municipios</td>
<td>62.8</td>
<td>60.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: INEGI. Censos de población y vivienda, varios años; para el año 2005. II Conteo de población y vivienda 2005.

Población y vivienda

Junto al crecimiento de la población y concentración de los habitantes en torno a áreas urbanas, se observa el mismo patrón para las viviendas. Para el año 2000, el total de viviendas en Puebla fue de 1 065 882 y para el año 2005 ascendió a 1 179 283 de viviendas particulares, lo cual representaba un crecimiento absoluto de 93 401 viviendas, es decir, creció en un 9.03 % en sólo cinco años (INEGI 2001 a, INEGI 2005 b).

Para el año 2000, el municipio de Puebla albergaba 315 891 viviendas, el 26.63 % en un solo municipio; sumando nueve municipios más, en especial siete de la zona conurbada (San Andrés Cholula, San Pedro Cholula, Atlixco, Amozoc, Tepeaca, Tecamachalco y San Martín Texmelucan), así como los de Tehuacán y Teziutlán, concentraban 499 697 viviendas (46.88 %).

En el 2005, el municipio de Puebla ya alojaba 369 954 viviendas (30.62 %), lo que demuestra un incremento en la concentración en un municipio; sumando los nueve municipios indicados en el párrafo anterior, se concentran 603 335 viviendas, esto es el 49.94 %.

El incremento en la concentración de la vivienda y en consecuencia de la población es evidente, ya que casi la mitad de las viviendas se concentraron en 10 municipios.

Características Educativas y de Salud

La población de la entidad alcanza un grado promedio de escolaridad de 7.4 (INEGI 2005 b), es decir, la mayor parte de los poblanos termina la primaria y cursa un año de secundaria. Este promedio se ubica por debajo del nacional, que es de 8.1 años de escolaridad. El municipio de Puebla y su zona conurbada presentan los promedios de escolaridad más altos de la entidad, por arriba del nivel nacional, con nueve y 10 años de escolaridad; en contraste, en la Sierra Negra, como es el caso del municipio de Zoquitlán y al sur de la capital, en el municipio de Teopantlán, el promedio es menor a cuatro años de estudio de educación primaria.

En el año 2005, las personas de seis años o más que saben leer y escribir al menos un recado, suman 3 971 810 y representaban el 87.2 % (INEGI 2005 b); esto ubica a la entidad como una de las de más alto índice de analfabetismo, ya que casi 13 de cada 100 personas en ese rango de edad no saben leer ni escribir, es decir, 589 560 habitantes. Los municipios que albergan poblaciones indígenas son los más desfavorecidos en este aspecto y los índices de analfabetismo alcanzan más del 40 %.

Con relación a la salud, en la entidad se observó en el 2005 y hasta el 2008, una tasa bruta de mortalidad de 4.82 %, lo cual significa que anualmente fallecen 4.82 personas por cada mil habitantes, cifra
similar al promedio nacional. No sucede así con la mortalidad de infantes, pues esta tasa asciende al 17.7 %, superior en 2.5 % al observado a nivel nacional. No obstante, la esperanza de vida al nacer es similar al promedio del país: 77.7 años para las mujeres y 72.7 para los hombres (CONAPO s/f).

Las principales causas de deceso se derivan de enfermedades del sistema circulatorio, después las relacionadas con enfermedades endocrinas, de nutrición y metabólicas; en tercer lugar la causa de los fallecimientos son los tumores (INEGI 2007a). Sin embargo, el principal motivo de egreso hospitalario, es decir la morbilidad (INEGI 2007b), son los traumatismos y envenenamientos tanto en hombres como en mujeres; en segundo término son las enfermedades del sistema circulatorio y urinario. Es importante aclarar que en el caso de las mujeres se omite la hospitalización debida a partos, que es la de mayor peso, ya que no se consideran una enfermedad.

Población indígena

De los habitantes de la entidad poblana en el año 2005, el 10.1 % de la población de la entidad, es decir 548 723 personas de cinco años o más se declararon como hablantes de alguna lengua indígena (INEGI 2005 b). En el estado existen seis etnias representativas: Nahuahtlis, el 72.3 % del total de hablantes de lengua indígena (397 207 personas); Tohonacas, el 17.6 % (97 064); Popolocas, el 2.6 % (14 688); el 2.3 %, Mazatecos (13 033), el 1.3 % Otomíes (7523) y Mixtecos, el 1.2 % (6 694). (Figura 2.2). Hay otra etnia que se indica en la Constitución del Estado (2009): la comunidad Tepelua o Hamaispini, que en este capítulo no se ha incluido por ser una etnia reducida, de tan sólo 262 hablantes, lo que indica un riesgo grave de desaparición en Puebla, aunque no en otras entidades.

Los asentamientos indígenas se ubican sobre todo en la Sierra Norte, en la Sierra Negra y al sur de Tehuacán. Pero los municipios con mayor número absoluto de hablantes de lenguas indígenas son Puebla y Tehuacán.

El monolingüismo está presente en uno de cada diez hablantes, es decir, 51 856 personas que representan el 9.4 % no hablan español, característica presente en muchos de los municipios que albergan población indígena, pero que se observa en mayor medida en los municipios de la Sierra Negra. Con excepción del municipio de Puebla, resulta importante mencionar que las zonas indígenas coinciden con las zonas en donde más se ha conservado la biodiversidad, lo que indica un manejo diferente de los ecosistemas por estos grupos (Boege Schmidt 2006) y la posibilidad de encontrar respuestas ante el deterioro y la destrucción de estos por procesos productivos vinculados a demandas nacionales e internacionales, el saqueo directo y la urbanización e industrialización.

Migración y remesas en la entidad

La población del estado de Puebla que emigra hacia Estados Unidos es casi el 1.5 % del total. De este porcentaje, 77.7 % son hombres y sólo 23 % mujeres. Es decir que en el año 2000 un total de 69 775 poblans migraron a los Estados Unidos (Cuadro 2.3), lo que puede significar un grave problema por la desintegración familiar que implica la emigración de sólo una parte de los miembros (generalmente los hombres); cabe destacar como contraste una importante entrada de remesas al estado.

En el año 2004 las remesas enviadas por los connacionales residentes en los Estados Unidos ascendieron a 16 730 millones de dólares (Banco de México 2004), por lo que en ese año, 1.4 millones de hogares en México recibieron remesas del exterior, de un total estimado de 25.5 millones de hogares en el país (CONAPO 2008). El 70.7 % de la población receptora de remesas tiene entre 20 y 59 años. El 82.1 % de los migrantes mexicanos percibe menos de 29 999 dólares anuales y el 18.0 %, más de 30 mil dólares al año (Cámara de Diputados 2004).

Catorce estados captan el 80 % de las remesas enviadas desde Estados Unidos: Michoacán, Guanajuato, Jalisco, Estado de México, Puebla, Distrito Federal, Veracruz, Guerrero, Oaxaca, Hidalgo, Chiapas, Zacatecas, Morelos y San Luis Potosí.

El estado de Puebla se encuentra en la sexta posición en la recepción de remesas; estos envíos representan anualmente una importante entrada de ingresos (cerca de 956 millones de dólares), mismos que son utilizados por las familias poblanas en rubros como educación, salud y vivienda.
Figura 2.2. Municipios de Puebla con población indígena mayor al 10%
Marginación de la población
El desarrollo de las regiones más urbanizadas, como es el caso de la ciudad de Puebla y su zona conurbada, no compensan la situación de marginación que padecen la mayor parte de los municipios de la entidad. En 2005 el estado de Puebla quedó clasificado como de marginación alta (CONAPO 2006), al ocupar el séptimo lugar, en una escala de mayor a menor grado de marginación, conforme a un ordenamiento de cinco estratos de marginación: muy alta, alta, media, baja y muy baja.

El 69 % de los municipios (150) presentaron un grado alto o muy alto de marginación. Se incluyen aquéllos en donde se asienta la mayor parte de la población hablante de alguna lengua indígena. (Figura 2.3, Cuadro 2.4). Únicamente cuatro municipios de la entidad: San Martín Texmelucan, San Miguel Xoxtlapam, Cuautlancingo y Puebla, registraron un grado de marginación muy bajo; 13 municipios más se ubicaron como de marginación baja, entre ellos Tepalcatepec y Teziutlán; en cambio, 50 municipios tuvieron un índice de marginación medio.

Al comparar los datos del 2005 con los del año 2000, se observa una reducción en los índices de marginación, porque en el 2009 disminuyeron los municipios con marginación muy alta y se mejoró en los de marginación alta y media. No obstante, Puebla se conservó en el séptimo sitio de marginación en el país (CONAPO 2006).

En términos de carencias, Puebla es la sexta entidad más empobrecida del país. Es preocupante que el 58.9 % de la población no tenga recursos para comprar alimentos ni para satisfacer necesidades básicas de salud, vivienda, vestido y transporte. Esto significa que 3 174 000 de pobladores están en situación de extrema pobreza. A manera de ejemplo cabe indicar que en Puebla está el cuarto municipio con mayor pobreza alimentaria de todo el país: Chichiquila, ubicado en el Valle de Ciudad Serdán y Santa Catarina Tlaltetepan.

El informe del Consejo Nacional de Evaluación de la Política de Desarrollo Social en México (CONEVAL 2007), indica que Puebla tiene 1 436 555 habitantes en pobreza alimentaria, 1 899 948 habitantes con pobreza de capacidades y 1 174 228 habitantes con pobreza de patrimonio, el 26.68 %, el 35.29 % y el 21.81 % de la población respectivamente.

Índice de Desarrollo Humano en Puebla
El indicador que sintetiza parte de la información antes expuesta es el Índice de Desarrollo Humano (IDH), que se construye con datos de alfabetización, matrícula escolar, esperanza de vida y el Producto Interno Bruto (PIB) per cápita. El índice toma valores entre 0 y 1, de tal forma que a mayor desarrollo humano el índice tomará valores cercanos a uno y, por ende, entre más cercano esté su valor a cero el índice representará un menor desarrollo humano en la región de estudio.

Cuadro 2.3 Población nacional y poblana emigrante a Estados Unidos de América 2000.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Nacional</th>
<th>Puebla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total</td>
<td>97 483 412</td>
<td>5 076 686</td>
</tr>
<tr>
<td>Emigrantes</td>
<td>1 569 157</td>
<td>69 775</td>
</tr>
<tr>
<td>% Migrantes</td>
<td>1.61</td>
<td>1.37</td>
</tr>
</tbody>
</table>

Composición de la población migrante

<table>
<thead>
<tr>
<th>Hombres</th>
<th>1 181 755</th>
<th>53 453</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Hombres</td>
<td>75</td>
<td>77</td>
</tr>
<tr>
<td>Mujeres</td>
<td>387 402</td>
<td>16 322</td>
</tr>
<tr>
<td>% Mujeres</td>
<td>25</td>
<td>23</td>
</tr>
</tbody>
</table>

Figura 2.3 Mapa del Índice de marginación por municipio del estado de Puebla 2005
Desde el año 2000 hasta el 2003 la entidad se ubicó en el lugar 25 en una clasificación nacional de mayor a menor desarrollo humano, con un índice igual a 0.7632 en el último año del periodo mencionado. Para el 2004 ocupó el lugar 26 entre todas las entidades del país con un IDH mayor de 0.7674, lo que indica que otras entidades aumentaron su desarrollo humano en mayor medida (ONU 2007).

No obstante este retroceso de la entidad en relación con otros estados del país, se han observado importantes avances en el nivel municipal: para el año 2000 el municipio de Puebla se encontraba en el lugar 70 al considerar los 2 438 municipios del país (INAFED 2005), San Andrés Cholula en el lugar 481, San Pedro Cholula en el 262, Tehuacán en la posición 582 y Teziutlán en la 508. Cinco años después el municipio de Puebla con un IDH igual a 0.8897 asciende al lugar 32; San Andrés y San Pedro Cholula a los lugares 110 y 144, con IDH = 0.8613 y 0.8534, respectivamente; mientras tanto Tehuacán y Teziutlán logran ubicarse en las posiciones 335 y 469 respectivamente, al presentar un IDH de 0.8246 y 0.8115 en el orden expuesto. Es importante mencionar que en la clasificación nacional por municipio, el IDH alcanza un valor máximo de 0.9509 en la delegación Benito Juárez del DF y un valor mínimo de 0.4354 en el municipio de Cochoapa el Grande del estado de Guerrero. Los municipios poblanos de Eloxochitlán en la Sierra Negra y de Tepetzintla en la Sierra Norte con IDH de 0.6022 y 0.5972 son los de menor desarrollo humano en la entidad.

Al igual que en el resto del país, en Puebla existe un desarrollo desigual que se hace evidente por una concentración de recursos en una pequeña parte del territorio estatal y una heterogeneidad de su estructura productiva en el resto de la entidad. El nivel de desarrollo de sus fuerzas productivas y la desigual distribución de la población y sus actividades económicas ocasionan también grandes disparidades respecto del bienestar económico por la elevada concentración de la riqueza y la inequitativa distribución del ingreso, manteniéndose una situación social donde la pobreza y sus situaciones extremas se generalizan para formar la dura realidad poblana (Ornelas 2004).

La economía poblana sigue el movimiento cíclico de la economía nacional. Así, en 1995, la crisis más profunda de la historia moderna del país se expresó de una manera dramática en esta entidad, que registró una caída de -8.2 puntos porcentuales. Sin embargo, el auge de la industria maquiladora explica el crecimiento observado durante la segunda mitad de los años noventa. La caída al comienzo de la década siguiente fue producto de la baja en la demanda de las importaciones por parte de EUA, por lo que culmina el periodo con una tasa de crecimiento del
Producto Interno Bruto (PIB) de 0.5 % (INEGI 2005 a). No obstante, en 2007 Puebla fue la octava economía estatal al nivel nacional, al aportar 389 mil 813 millones de pesos a precios corrientes básicos: el 3.35 % del total nacional (INEGI 2009 d).

Actualmente Puebla también experimenta la crisis que de manera generalizada enfrenta el país y el mundo en general: quiebre de empresas y desempleo son los principales síntomas de un problema que aún está por documentarse y analizarse.

Aportaciones al PIB estatal por sector de la economía

Desde hace tres lustros la sectorización económica de la entidad ha variado poco: alrededor de dos tercios del PIB estatal (INEGI 2005 a), en valores corrientes, corresponden al sector terciario, comercio y servicios, con una tendencia ligeramente ascendente pues en 1993 representaba 63.6 %, en tanto que en 2006 asciende a 65.6 %, teniendo su máxima representación entre los años 2002 y 2004. En este mismo periodo el sector secundario, la industria, aportó al PIB entre 28 y 34 %, alcanzando su máximo valor a fines de la década de los noventa del siglo pasado. En cuanto a las actividades primarias, agricultura y ganadería son las únicas que han modificado en forma importante su aportación al PIB estatal al reducir su valor a la mitad: en 1993 el valor en pesos corrientes (que expresan el valor adquisitivo de pesos de cada año) del sector primario representó el 8.1 % del PIB y en 2006 bajó a 3.9 %, siendo constante su descenso (INEGI 2002, INEGI 2006, INEGI 2008 b).

Los establecimientos grandes, aquéllos en donde laboran más de 50 personas o que sus ingresos son superiores a 1 600 000 pesos, aportan alrededor del 80 % del valor agregado censal bruto y se concentraron en forma especial en las tres regiones más urbanizadas de la entidad (Puebla, Tehuacán y Teziutlán). En tanto que la proporción de la población que habita en estas tres zonas ascendió a 46.2 %, son tres cuartas partes de los establecimientos de este tipo los que se ubican en los parques industriales y en las zonas comerciales aledañas a Puebla, Tehuacán y Teziutlán, convirtiendo a estas regiones en las más atractivas del estado, tanto económica como culturalmente, pues concentran la mayor parte de los servicios necesarios para el desarrollo de las comunidades, entre ellas el agua potable, drenaje, alumbrado público, limpieza, seguridad y pavimentación.

Sin embargo, en estas tres zonas la emisión de contaminantes y desechos industriales también presenta altos índices de concentración (Sistema estatal de monitoreo ambiental 2007) (SEMARNAT s/f), ya que en la Zona Metropolitana de la ciudad de Puebla, donde viven 35 de cada 100 poblanos, se agrupan 64 de cada 100 de los establecimientos grandes, industriales y comerciales de la entidad.

Población ocupada por sector e ingresos obtenidos

En las 165 237 unidades económicas (el 5.5 % del país) con las que contaba la entidad en 2004 (INEGI 2005 a) se empleaban 649 927 personas, el 4.0 % del personal ocupado de México. El 59.4 % (386 116) del personal ocupado en la entidad son hombres y el 40.6 % (263 811) mujeres. La remuneración que recibe anualmente en promedio cada trabajador en Puebla es de $63 516, inferior al promedio nacional que es de $79 551.

En términos generales, la sectorización económica de la población ocupada (INEGI 2008 b) es la siguiente: 49 de cada 100 ocupados realizan actividades comerciales y de servicios públicos y privados; 27 de cada 100 laboran en las industrias manufactureras, extractivas y de electricidad, así como en la construcción y 24 de cada 100 se ocupan en actividades primarias como la agricultura, la ganadería, pesca y caza. La situación más descompensada se da sobre todo en el sector primario: recuérdese que en la actualidad aporta menos del 4 % al PIB en valores corrientes, pero como ya se indicó, en actividades primarias labora prácticamente un cuarto de la población ocupada.

Las desventajas salariales para los trabajadores ocupados en actividades agropecuarias son evidentes: 30 de cada 100 hombres y 70 de cada 100 mujeres que se ocupan en actividades del sector primario no declaran ingresos; además, 55 hombres y 28 mujeres de cada 100 ganan como máximo dos
salarios mínimos. En cambio, un tercio de la población masculina ocupada en la industria de la transformación o en actividades terciarias recibe más de tres salarios mínimos.

En cuanto a los ingresos laborales, la situación de las mujeres es siempre más desfavorable que la de los hombres; sin embargo, la situación de las ocupadas en actividades de los sectores secundario y terciario no es tan precaria como las que se ocupan en actividades primarias, esto es: en el primero, seis y en el segundo, 18 mujeres de cada 100 reciben más de tres salarios mínimos por su trabajo, lo que no sucede con las mujeres campesinas e indígenas que trabajan en el campo.

Principales sectores, productos y servicios

Sector Primario (Agricultura, ganadería, silvicultura, pesca y minería)

Importancia del sector rural

Desde una visión más amplia que la mercantil-economicista en Puebla, el sector rural es de vital importancia por la ocupación de mano de obra y tierras, así como por su participación en los procesos de producción de alimentos e insumos biológicos y minerales, para el desarrollo sustentable del estado que tome en cuenta los servicios ambientales que prestan los ecosistemas, aunque aún no sean valorados a plenitud.

Varios son los factores que limitan las expectativas de desarrollo económico y de bienestar social, los que obligan a destinar crecientes recursos públicos y privados para contrarrestar las afectaciones inerentes que producen: la destrucción y degradación de bosques y selvas, la desaparición de especies de flora y fauna, la degradación y desertificación de suelos, la pérdida y contaminación de cuerpos y mantos de agua, la contaminación atmosférica y la deposición inadecuada de descargas de servicios urbanos y de residuos industriales. Si el mundo urbano e industrial es indiferente a esta destrucción, queda en manos de la población rural —con una explícita racionalidad ecológica— el mejoramiento de esta perspectiva, ya que ellos son los directamente relacionados con la biodiversidad.

La dinámica de la economía manufacturera nacional ha relegado al campo. El rezago social se concentra en las zonas rurales: la educación, la salud y el acceso a una vida digna son temas lejanos a la realidad cotidiana de las grandes masas campesinas.

Puebla tiene una extensión de 3 428 966.1 ha, de las cuales 1 549 195.2 ha son para la agricultura (el 45.17 % de la superficie estatal), el 10.4 % para pastizal, el 9.4 % para bosque, el 7.0 % para matorral xerófilo, el 4.0 % para selva, el 0.6 % para otros tipos de vegetación, el 0.3 % para áreas sin vegetación y el 1.4 % para áreas urbanas. De la superficie agrícola, 1 339 640 ha son de temporal y sólo 209 555 de riego, es decir, el 86.47 % y el 13.53 % respectivamente (INEGI 2008 a). El total de hectáreas dedicadas a las actividades agrícolas, pecuarias y forestales es de 2 520 411.50.

Las actividades primarias ocupan 528 854 trabajadores pero una elevada proporción tiene ingresos muy bajos. Su contribución a la riqueza estatal es reducida al no superar el 4 % del PIB, razón por la cual la pobreza se manifiesta principalmente en las zonas rurales. Aunado a esto, implica el minifundismo; existe una baja capitalización y productividad, poca capacitación de los productores, un acceso muy limitado al financiamiento y un inadecuado aprovechamiento de la infraestructura productiva, especialmente la hidráulica (Gobierno del Estado de Puebla 2005) (INEGI 2008 a).

Estructura agraria

La superficie dedicada a las actividades agrícolas, pecuarias y forestales, que es de 2 520 411.50 ha, presenta el siguiente régimen de tenencia de la tierra: 1 171 919 ha en tenencia ejidal y comunales, 1 333 723 en propiedad privada y colonia y 14 767 en pública; esto es, el 46.49 %, 52.91 % y el 0.05 % respectivamente (INEGI 2009 a).

De un total de 31 514 propiedades sociales (ejidos y comunidades) existentes en el país, en Puebla hay 1 194, comprendiendo una extensión de 1 630 741 ha que incluye superficies de uso común, superficie parcelada y asentamientos humanos (INEGI 2009 b. Entre censo agropecuario y ejidal de 2009, no hay correspondencia de cifras). Esta superficie está asignada a 308 555 ejidatarios, comuneros y posesionarios, con una extensión media por individuo de
5.28 ha (INEGI 2009 b), mientras que el restante 41.9 % de la superficie estatal pertenece a 290 628 propietarios privados, con una extensión media de 4.9 ha por propietario (INEGI 2001 b).

Este territorio con sus distintas formas de apropiación por parte de campesinos, indígenas y productores rurales, es el espacio en el que se encuentra la biodiversidad poblana y en el que se realizan y desarrollan las actividades productivas pero es también el espacio modificado en su uso para convertirse en la base de la producción agrícola, ganadera, forestal y pesquera.

Producción Agrícola

De acuerdo a la superficie sembrada, los principales cultivos cíclicos del Estado son: maíz (Zea mays), frijol (Phaseolus vulgaris), cebada (Hordeum vulgarris), trigo (Triticum aestivum) y papa (Solanum tuberosum). Los municipios con mayor superficie sembrada son: Chignahuapan, Chalchicomula de Sesma, Tlahichuca y Zacapoaxtla (Gobierno del Estado de Puebla 2004).

La superficie total plantada con cultivos perennes asciende a 240 181 ha. En esta superficie se siembra principalmente, en orden de importancia: café (Coffea arabica), pastos cultivados (Poaceae), naranja (Citrus sinensis), caña de azúcar (Saccharum officinarum) y alfalfa (Medicago sativa). Los municipios con mayor superficie sembrada son: Hueytamalco, Francisco Z. Mena, Venustiano Carranza, Xicotepec y Jalpan.

En el año 2004, por la producción obtenida, el estado de Puebla se mantuvo en las primeras posiciones a nivel nacional en cultivos como flores a cielo abierto (1er lugar), haba (2°), café, maíz, y tomatode verde (4°), papa (4°), cebada grano y naranja (5°), maíz grano (7°) y frijol (9°) (Gobierno del Estado de Puebla 2004).

Para el año 2007 (Cuadro 2.5) Puebla obtuvo lugares importantes, pero en menos cultivos y con volúmenes de producción reducidos: café, cebada, alfalfa y otros cultivos (incluye papa) (4°), cebada grano y naranja (5°), algodón (6°), frijol (8°), maíz blanco (9°) y maíz amarillo, sorgo grano y caña de azúcar (10°).

La base de la alimentación poblana, generada por la población campesina e indígena, se ha realizado modificando los ecosistemas naturales, transformándolos en agroecosistemas, algunos de los cuales han derivado en zonas infértiles, erosionadas y contaminadas (Careaga Ruiz 2005).

Ganadería

La utilización de diferentes especies domésticas en el estado, como la bovina (leche y carne), porcina, ovina, caprina, búfalo de agua y aves, entre otras, indican un alto potencial de la ganadería poblana en términos de desarrollo económico pero, por el contrario, también en el aspecto ambiental por las superficies destinadas a la alimentación de este ganado y por los gases de efecto invernadero que la ganadería bovina produce (Comité Intersecretarial 2006). Los sistemas de producción están caracterizados por sus diferentes niveles tecnológicos: los agricultores comerciales, los productores en transición que agrupan a ejidatarios y productores privados y los productores tradicionales o de subsistencia.

El subsector ganadero mantiene a la entidad en destacados lugares en el contexto nacional de alimentos pecuarios, excepto en el ganado bovino y producción de leche.

Hacia el año 2007 (INEGI 2009 a) existían en la entidad 344 079 cabezas de ganado bovino, de las cuales 5 412 son sementales, 93 447 vientos (para producción de leche 46 789, para carne 20 773 y doble propósito 25 885), 11 314 animales de trabajo y 157 229 animales en desarrollo o engorda. En este aspecto, la producción diaria de leche es de 429 mil litros. Esta población ubica a Puebla como una entidad con reducida importancia en la ganadería bovina y en la producción de leche.

En Puebla existen 753 121 cerdos, de éstos, 45 495 son de ganado corriente, 110 639 de cruz y 422 328 de fino. Las existencias más altas de cerdos se localizan en Tehuacán, Ayalpan, Tepanco de López, Tecamachalco y Yehuitlantecpec. Esta población ubica a Puebla en la cuarta posición en producción porcina (INEGI 2009 a).

A nivel nacional ocupa el cuarto lugar en las existencias totales de aves de corral, con 28 418 522: 13 973 488 son gallinas, 8 268 137 de pollos en engorda y 3 124 044 de pollas y pollos en desarrollo. Los municipios que concentran a la mayoría de las aves son Ayalpan, Tehuacán, Tecamachalco, Tepanco de López y Tochtepec. En este aspecto, la producción media diaria de huevo es de 8 490 toneladas, con
Cuadro 2.5 Unidades de producción con cultivos en el ciclo primavera - verano según superficie sembrada, cosechada y producción obtenida, a nivel nacional y estatal (2007)

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Entidad federativa</th>
<th>Unidades de producción</th>
<th>Superficie (hectáreas)</th>
<th>Producción obtenida (toneladas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>algodón</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>13 234</td>
<td>120 643.22</td>
<td>116 828.15</td>
<td>326 050.10</td>
</tr>
<tr>
<td>Puebla</td>
<td>956</td>
<td>1 308.17</td>
<td>1 163.63</td>
<td>2 118.38</td>
</tr>
<tr>
<td>avena forrajera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>87 799</td>
<td>667 919.01</td>
<td>638 172.80</td>
<td>8 590 016.68</td>
</tr>
<tr>
<td>Puebla</td>
<td>4 580</td>
<td>10 125.84</td>
<td>9 261.29</td>
<td>108 894.51</td>
</tr>
<tr>
<td>cebada grano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>31 651</td>
<td>202 926.77</td>
<td>190 919.23</td>
<td>518 573.50</td>
</tr>
<tr>
<td>Puebla</td>
<td>3 302</td>
<td>14 373.20</td>
<td>13 073.83</td>
<td>37 475.54</td>
</tr>
<tr>
<td>chile verde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>35 255</td>
<td>155 656.60</td>
<td>146 048.30</td>
<td>1 530 288.71</td>
</tr>
<tr>
<td>Puebla</td>
<td>2 504</td>
<td>1 839.28</td>
<td>1 616.29</td>
<td>9 846.99</td>
</tr>
<tr>
<td>frijol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>526 410</td>
<td>1 686 679.69</td>
<td>1 522 494.97</td>
<td>882 275.73</td>
</tr>
<tr>
<td>Puebla</td>
<td>36 074</td>
<td>56 211.62</td>
<td>48 923.93</td>
<td>87 122.05</td>
</tr>
<tr>
<td>maíz blanco</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>2 143 099</td>
<td>6 573 818.41</td>
<td>5 993 767.19</td>
<td>16 867 463.46</td>
</tr>
<tr>
<td>Puebla</td>
<td>664</td>
<td>2 224.15</td>
<td>1 756.74</td>
<td>18 574.56</td>
</tr>
<tr>
<td>sorgo grano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>107 701</td>
<td>1 149 768.49</td>
<td>1 117 130.76</td>
<td>3 996 792.30</td>
</tr>
<tr>
<td>Puebla</td>
<td>5 533</td>
<td>19 577.18</td>
<td>18 393.67</td>
<td>62 254.19</td>
</tr>
<tr>
<td>trigo grano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>28 652</td>
<td>283 128.58</td>
<td>275 364.05</td>
<td>1 258 816.30</td>
</tr>
<tr>
<td>Puebla</td>
<td>2 339</td>
<td>5 956.08</td>
<td>5 391.87</td>
<td>12 766.72</td>
</tr>
<tr>
<td>otros cultivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estados Unidos Mexicanos</td>
<td>220 726</td>
<td>725 947.36</td>
<td>665 655.56</td>
<td>6 418 409.49</td>
</tr>
<tr>
<td>Puebla</td>
<td>45 368</td>
<td>72 090.03</td>
<td>64 829.08</td>
<td>431 099.98</td>
</tr>
</tbody>
</table>

Fuente: INEGI. 2009 (a). VIII Censo Agrícola, Ganadero y Forestal. 2007. INEGI
lo que se ubica en el segundo lugar al nivel nacional, sólo después de Jalisco (INEGI 2009 a).

De acuerdo al número de cabezas, las cabras, ovejas y equinos son otras especies de importancia en la entidad. La caprina suma 335 291 y la ovina 636 379; esto le hace ser el segundo y el cuarto productor nacional en cada caso. Por lo que toca a los equinos, se registraron 66 615 caballos, 21 387 mulas y 63 031 asnos, lo que ubica a Puebla como octavo productor en el primer caso y segundo lugar en producción de mulas y asnos. También ocupa el segundo lugar en producción de conejos, con 73 498 cabezas (INEGI 2009 a).

Adicionalmente se presenta la producción de miel, con la existencia de 65 012 colmenas, lo que ubica al estado en el séptimo lugar nacional; esto le permite la venta de 346 toneladas de miel, 3.76 de cera, 1.04 de polen y 10.91 de propóleo.

Silvicultura
En producción forestal Puebla tiene una superficie total de 1 939 ha. De estas, un 93.2 % corresponde a coníferas, 6.4 % a latifoliadas y un 0.4 % a otras especies (Centro Nacional de Desarrollo 1998)¹. Las principales especies explotadas son el pino, con 1 738 unidades productivas, el encino, que es la principal especie del estado con 3 192 unidades y el oyamel con 69 unidades, que en conjunto representan el 94.6 % del total de la producción.

La producción forestal maderable durante el 2007 (INEGI 2009a) fue de 244 603 metros cúbicos rollo; de coníferas destaca el pino con 178 719 m³ y el oyamel con 32 725 m³; de las latifoliadas se obtuvieron 23 701 m³ de encino y 8 123 m³ de otras; adicionalmente se obtuvieron 79 m³ de maderas preciosas y 424 de comunes tropicales (INEGI 2008a). Los municipios con mayores volúmenes de productos maderables explotados son Chignahuapan, Tetela de Ocampo, Vicente Guerrero, Zacatlán y Huauchimango.

Pesca
El estado cuenta con una superficie de aguas interiores de 6 500 ha que en 2007 (INEGI 2008a) le permitieron 5 300 toneladas de producción acuícola, en peso vivo por especie. Esta actividad la realizaron 2 129 personas que trabajan en esta actividad.

En el volumen de producción pesquera se registran las siguientes especies: carpa (Cyprinus carpio Linné), trucha (Salvelinus fontinalis), mojarra tilapia (Diplodus vulgaris) y gusano de fango. También se capturan otras especies: pescado blanco (Micromesistius poutassou), lobina negra (Micropterus salmoides), langostino (Penaeus kerathurus), bagre (Bagre marinus) y rana toro (Rana catesbeiana) (cuadro 2.6).

La infraestructura para estas actividades se compone de nueve presas, siete lagunas naturales y 85 bordos, así como de once centros acuícolas para la producción de crías. “De acuerdo a información oficial 2007 (SDR), existen registradas 389 unidades productivas en Puebla de las especies principales: trucha (148), tilapia (120) y carpa (121)” (FAO 2008). Los municipios que destacan en la producción pesquera son Chignahuapan, Zacatlán, Huauichimango, Atlixco y Santa Rita Tlahuapan, entre otros.

Esta actividad se encuentra en peligro dada la contaminación de las aguas interiores. Según el titular de la Secretaría de Desarrollo Rural del Gobierno del Estado el caso de la pesca del bagre en la entidad poblana es representativo, ya que prácticamente ha desaparecido debido a la sobreexplotación y la contaminación de las cuencas donde se reproduce; por ello, el gobierno ha priorizado su resbiembra en ríos, a fin de reactivar el desarrollo regional del sur de la entidad (Secretaría de Desarrollo Rural 2007).

Minería
La explotación de minerales metálicos en Puebla fue importante hace tiempo pero en la actualidad es una actividad esporádica; sin embargo, destaca el hecho que Puebla es productor de minerales no metálicos, por lo que la entidad participó en el 2007 con el 6.66 % del valor total nacional de la producción minera, con un total de 2 607 millones de pesos. Entre los productos no minerales, los más importantes son: feldespato, perita, talco, mármol, bentonita, calcita y yeso (cuadro 2.7) (Secretaría de Economía 2008).

Entre las plantas instaladas más importantes para el tratamiento de minerales se encuentran las siguientes: Marmolera Internacional de Puebla,

¹ No se incluye el dato del censo agropecuario de 2007, dado que reporta sólo 326 ha, correspondientes a las unidades de producción que reportaron tener superficie forestada, lo cual puede implicar una subestimación de este reducido recurso.
Cuadro 2.6 Volumen de la producción de acuicultura en Puebla, en peso vivo por especie (2007)

<table>
<thead>
<tr>
<th>Especie</th>
<th>Volumen de la producción (Toneladas)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Carpa</td>
<td>3 148</td>
</tr>
<tr>
<td>Trucha arcoiris</td>
<td>793</td>
</tr>
<tr>
<td>Tilapia</td>
<td>332</td>
</tr>
<tr>
<td>Lobina negra</td>
<td>24</td>
</tr>
<tr>
<td>Pescado blanco</td>
<td>21</td>
</tr>
<tr>
<td>Captura sin registro oficial (carpa, tilapia y trucha arcoiris)</td>
<td>968</td>
</tr>
<tr>
<td>Gusano de fango (uso industrial)</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>5 300</td>
</tr>
</tbody>
</table>

Fuente: INEGI. Anuario Estadístico Puebla 2008

Cuadro 2.7 Valor de la producción minera en Puebla 2003-2007 (Pesos Corrientes)

<table>
<thead>
<tr>
<th>Productos/Años</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>No metálicos</td>
<td>2 607 820 603.25</td>
</tr>
<tr>
<td>Agregados pétreos</td>
<td>32 016 299.52</td>
</tr>
<tr>
<td>Arcillas</td>
<td>29 663 524.92</td>
</tr>
<tr>
<td>Arena</td>
<td>226 561 820.62</td>
</tr>
<tr>
<td>Bentonita</td>
<td>17 365 037.05</td>
</tr>
<tr>
<td>Calcita</td>
<td>134 561 133.53</td>
</tr>
<tr>
<td>Caliza</td>
<td>139 055 144.92</td>
</tr>
<tr>
<td>Caolín</td>
<td>1 102 010.38</td>
</tr>
<tr>
<td>Feldespato</td>
<td>147 451 577.88</td>
</tr>
<tr>
<td>Grava</td>
<td>319 676 049.43</td>
</tr>
<tr>
<td>Olivino</td>
<td>7 045 602.96</td>
</tr>
<tr>
<td>Perilita</td>
<td>9 442 560.67</td>
</tr>
<tr>
<td>Rocas dimensionables</td>
<td>1 534 012 429.27</td>
</tr>
<tr>
<td>Yeso</td>
<td>9 604 912.10</td>
</tr>
<tr>
<td>Zeolitas</td>
<td>262 500.00</td>
</tr>
<tr>
<td>Total</td>
<td>2 607 820 603.25</td>
</tr>
</tbody>
</table>

Fuente: Secretaría de Economía 2008
Materias Primas Minerales de Ahuazotepec S. A. de C. V. y Yeso Panamericano S. A. de C. V. Algunas empresas que se encuentran explorando en el estado son: Almaden Minerals LTD/Minera Pinnacle de México S. A. de C. V., Minera Meteor S. A. de C. V. y Gold Corp Inc/Starcore International Ventures LTD. Además, en el área de unidades minero-metalúrgicas y de transformación, en materia de fundición, se encuentran Ternium Hylsa de Puebla, S. A., Minera Autlán, CIMEC International (Secretaría de Economía 2008).

Lo positivo de esta industria es que Puebla cuenta con un total de 160 161 trabajadores en el sector minero, de los cuales alrededor de 115 mil laboran en la explotación de minerales no metálicos. El aspecto cuestionable es que la producción minera representa, para el 2008, la concesión de 305 títulos, principalmente a empresas transnacionales, con lo cual se concesiona una superficie de 186 418 ha, la cual fue mayor en el 2005, pues significó 475 004 ha; de esta manera, del 13.9 % de la superficie estatal total que se dedica a la minería, ha disminuido al 5.48 % (Secretaría de Economía 2008). Superficie considerable sujeta al impacto ambiental de la minería, lo cual es grave ante las implicaciones que tiene esta contaminación (Gutiérrez Ruiz 1997).

Sector Secundario (Industria)

De acuerdo con el Plan Estatal de Desarrollo 2005-2011, el sector manufacturero es de gran importancia por su peso económico y por sus ramificaciones en el tejido productivo estatal, al generar la mayor parte del valor agregado de la economía. En los últimos veinticinco años su aportación a la riqueza del estado ha sido de alrededor de la cuarta parte del PIB, y da empleo a la quinta parte de los trabajadores poblanos.

El sector industrial poblano muestra evidentes contrastes: por una parte existen ramas como la siderúrgica, la petroquímica, la automotriz, la de autopartes y algunos segmentos del sector textil que disponen de tecnología de punta y de formas de integración que les permiten elevar la productividad en el conjunto de su actividad y, por la otra, hay ramas que han quedado rezagadas y paulatinamente pierden participación en la producción estatal, como es el caso de las dedicadas a los alimentos, bebidas y otros segmentos de los mismos textiles.

En el 2003 se registraron 26 806 industrias manufactureras, de las cuales 4 544 se asentaban en la ciudad de Puebla. Por el personal ocupado, las ramas más relevantes fueron (INEGI 2008a) la de productos metálicos, maquinaria y equipo, en primer lugar, con
24 974 empleados (incluye instrumentos quirúrgicos y de precisión); en segundo lugar, con 15 241 empleados, la de productos alimenticios, bebidas y tabaco y en tercer lugar, con 10 664 empleados, la de textiles, prendas de vestir e industria del cuero.

La industria está concentrada en la ciudad de Puebla y los municipios próximos, (87.01 %), así como en las regiones de Tehuacán y Teziutlán. En los últimos años se impulsaron áreas y parques industriales en el interior del estado, los cuales representan el soporte para nuevos polos de desarrollo regional. Sin embargo, en el resto de la entidad sólo estaba el 12.99 % de la industria.

La concentración de la industria poblana en la zona conurbada ha generado problemas graves de contaminación de aire, suelo y agua, que incide de manera importante en la salud de los habitantes de la Zona Metropolitana del Valle de Puebla. Entre los contaminantes se encuentran el dióxido de azufre (SO\(_2\)) (partículas suspendidas con diámetro menor a 10 micrómetros, PM10), ozono (O\(_3\)) y monóxido de carbono (CO), producto de la actividad en la ZMVP.

Existen otros compuestos denominados “tóxicos del aire”, (contenidos en los compuestos orgánicos volátiles y partículas, por ejemplo: acetaldehído, benceno, 1,3 butadieno, formaldehído y compuestos polícíclicos aromáticos, entre otros), que también se encuentran en concentraciones importantes en el aire ambiente y que afectan la salud humana (SEMARNAT s/f).

Sector Terciario (Comercio y servicios)

Comercio

Las actividades comerciales y de servicios tienen un importante arraigo y representan el sector más importante de la economía poblana. En la actualidad,
ambas actividades representan tres quintas partes del PIB y dan empleo a dos quintas partes de la población ocupada. De manera similar a otros sectores económicos, las micro, pequeñas y medianas empresas constituyen la generalidad de las compañías (Gobierno del Estado de Puebla 2005).

El comercio al por mayor representa el 45 % de los ingresos totales del sector comercial, mientras que el restante 55 % lo absorbe el comercio al detalle. No obstante, el primero ofrece el 20 % de la ocupación en tanto que el 80 % lo genera el comercio al menudeo.

En el comercio al mayoreo destaca la compra-venta de maquinaria y equipo de transporte y refacciones y la comercialización de alimentos, bebidas y tabaco. En cambio, en el comercio al por menor, la actividad predominante es el que se refiere a productos no alimenticios, representando dos terceras partes de la actividad. Los productos alimenticios, bebidas y tabaco representan la otra tercera parte del comercio al por menor (Gobierno del Estado de Puebla 2005).

En Puebla, este sector es el mayor generador de empleos aunque, de forma similar a las actividades industriales, presenta un alto grado de concentración en la capital y las principales ciudades del estado. Los servicios más importantes proporcionados tienen que ver con el alquiler de inmuebles, la educación, la salud y los servicios financieros (Gobierno del Estado de Puebla 2005).

En la economía poblana, la suma de todos estos ramos representa aproximadamente dos terceros del volumen de la economía estatal, destacando especialmente el sector comercial, al que corresponden la mayor parte de las unidades productivas del estado. En 2003 existían en el estado un total de 86 458 establecimientos comerciales, que empleaban a 211 149 trabajadores. La actividad comercial se concentra especialmente en las grandes zonas urbanas del valle Poblanol-Tlaxcalteca y la región de Tehuacán. Para el comercio de los bienes, las ciudades poblanas más importantes cuentan con centros de distribución; en ciudades medianas existen mercados fijos y en las zonas con menores densidades poblacionales, la alternativa la constituyen los tianguis.

Comunicaciones y transportes

Puebla presenta una geografía accidentada en amplias zonas de su territorio, lo que ha limitado la expansión y eficiencia del sistema de comunicaciones y transportes.

No obstante, el estado figura entre los cinco nodos principales del país, en relación con el tránsito diario de camiones de carga y supera en este indicador a las ciudades de Guadalajara y Monterrey, lo que abre un panorama alentador para que esta ventaja competitiva se traduzca en creación de empleos (Gobierno del Estado de Puebla 2005).

El transporte ferroviario no ha sido una opción importante para el manejo de carga pero es deseable lograr acuerdos relevantes para abatir los costos de traslado de los productos poblano.

Por lo que respecta a la infraestructura aeroportuaria, se han canalizado importantes inversiones en el aeropuerto “Hermanos Serdán” para transformarla en un elemento moderno de carga y pasaje (Gobierno del Estado de Puebla 2005).

En cuanto a las telecomunicaciones, han mantenido un ritmo de crecimiento elevado al incrementarse en 82.4 % el número de líneas telefónicas entre 1995 y 2001, pero la cobertura per cápita todavía está por debajo de la media nacional. La radio y la televisión estatales han sido un factor importante en el enlace de más centros de población (Gobierno del Estado de Puebla 2005).

Aunque se han logrado importantes avances en el servicio de transporte público mediante reformas legales que sentaron las bases para su modernización y profesionalización, resulta indispensable continuar con este proceso y mejorar el marco regulatorio.

Turismo

El sector turístico representa una importante fuente de ingresos y empleo y tiene el potencial para convertirse en un pilar del desarrollo del estado. En el año 2007 este sector dio empleo a 89 317 trabajadores y es uno de los componentes más destacados de la evolución del sector económico de los servicios (Gobierno del Estado de Puebla 2005).

Puebla tiene importantes atractivos para el turismo, además de su gastronomía, cultura y diversidad de climas. Según el Instituto Nacional de Antropología e Historia, cuenta con áreas arqueológicas catalogadas y protegidas y se ubica en los primeros lugares en materia de estados que albergan patrimonio cultural, compitiendo con otros como Oaxaca,
el Distrito Federal, Guanajuato, Morelia y Zacatecas (Gobierno del Estado de Puebla 2005).

La afluencia turística registrada durante el año 2004 en Puebla fue de 5 576 000 visitantes y registró una derrama económica de 4 641 000 millones de pesos (Gobierno del Estado de Puebla 2004).

Además, la ciudad de Puebla ha tenido momentos importantes al obtener los primeros lugares en ocupación hotelera en la categoría de “Ciudades del Interior”, situándose arriba de la media nacional por más de 12 puntos y por encima de destinos como Oaxaca, Monterrey y Guadalajara.

Exportaciones
Puebla se ha insertado en la globalización: en el contexto nacional, las exportaciones poblanas en el 2004 representaron el 3.7 % del total nacional, ocupando el décimo lugar, además de una posición superavitaria en la balanza comercial (Gob. del Edo. de Puebla. 2005).

El volumen total del comercio poblano en el sexenio pasado ascendió a 61 532 millones de dólares, de los cuales 35 155 correspondieron a exportaciones y 26 377 a importaciones, lo que arrojó un saldo superavitario de 8 mil 778 millones de dólares.

Conclusiones
Al igual que el esquema de desarrollo del país, la entidad poblana presenta dos facetas contradictorias: por una parte, la de un estado moderno y desarrollado pero también la de una entidad pobre y marginal, con bajos índices de desarrollo social. De la misma manera que en materia ambiental a nivel nacional, Puebla es una entidad rica en biodiversidad, pero de las primeras también en su destrucción, deterioro y contaminación.

Puebla, el granero de la Nueva España y fuente importante de alimentos del México actual, es un estado de reducida superficie y sin embargo poseedor de relevancia y diversidad productiva pero con un campo en crisis y con su población rural sumida en la pobreza, la marginación y sujeta a la necesidad de emigrar del país.

Puebla, la industrial, pujante desde su vieja historia con su industria textil y actualmente con su industria automotriz y su maquila de exportación, sabe también de industrias que desaparecen ante la dinámica del mercado mundial, con bajos salarios para sus obreros y un desempleo creciente.

Puebla, la de la urbanización de primer mundo, Angelópolis como símbolo de la modernidad y una zona conurbada en crecimiento, que aloja casi a la mitad de la población estatal, con altos niveles de vida, tiene, en contraste, un espacio en donde la población restante se establece de forma dispersa, en asentamientos precarios y en ecosistemas fragmentados y contaminados por la urbanización, la industrialización y el crecimiento de una infraestructura de transportes y comunicaciones en expansión irracional.

Puebla es paradigma de la riqueza concentrada y pobreza generalizada. Por estos contrastes, está obligada a repensar su forma de vida y a modificar su modelo de desarrollo: así lo requiere la conservación de la riqueza de sus ecosistemas y el bienestar de sus habitantes.

LITERATURA CITADA

SEDESOL (—). 2003. Programa de Ordenamiento Urbano de la Zona Conurbada Puebla-Tlaxcala. SEDESOL/BUAP.

Parque Ecoturístico Valle de las Piedras Encimadas, ubicado en Zacatlán de las Manzanas al norte del estado de Puebla. Foto: Miguel Ángel Sicilia / Banco de imágenes de CONABIO.
INTRODUCCIÓN
Gonzalo Yanes Gómez

Los factores topográficos y climáticos son determinantes de la gran variedad de ambientes que existen en nuestro país. La complicada topografía (más de 50 % del territorio nacional se encuentra en altitudes mayores a los mil metros sobre el nivel del mar), junto con las diferencias determinadas por la latitud, producen un mosaico climático con un número muy grande de variantes. A nivel regional puede notarse la influencia de su complicada y variada topografía así como la situación de sus principales cordilleras. Los cambios altitudinales traen consigo variaciones climáticas en cuanto a la intensidad de la irradiación y de la insolación, de la humedad atmosférica relativa, la oscilación diurna de la temperatura y la cantidad de oxígeno disponible (Neyra-González y Durand-Smith 1998). La forma que le confieren al país sus litorales, junto con la alineación de sus principales serranías, influyen de manera decisiva en la distribución de la humedad y también de la temperatura (Cordero y Morales 1998).

Dentro de los factores históricos destaca el biogeográfico. El territorio mexicano es considerado por los biogeógrafos como la zona de transición entre dos grandes regiones: la neotropical (constituida por Sudamérica y Centroamérica) y la neártica (que corresponde a Norteamérica), que hicieron contacto hace aproximadamente seis millones de años. Debido a esto, México constituye una zona biogeográficamente compuesta, donde el contacto entre biotas ancestrales ha dado como resultado una rica mezcla de fauna y flora con diferentes historias biogeográficas (Flores y Gerez 1994).

Además de las características biogeográficas, otro elemento histórico importante es el relacionado con los cambios climáticos severos ocurridos durante el Pleistoceno, cuando los glaciares se extendieron a latitudes tales que nuestro país estuvo bajo la influencia de climas fríos y templados. Esto propició el establecimiento de especies propias de este tipo de climas, mientras que las especies de climas tropicales se extinguieron en gran parte de las áreas que ocupaban, por lo que su distribución se restringió a ciertas zonas denominadas refugios pleistocénicos. El aislamiento que sufrieron en estos refugios dio origen al surgimiento de nuevas especies, que extendieron su área de distribución cuando los glaciares se retiraron (Neyra-González y Durand-Smith 1998). Este proceso produjo, de acuerdo con algunos científicos, un incremento considerable en el número de especies, por lo que un buen número de las presentes en México son de origen relativamente reciente y de naturaleza endémica. Análogamente, un fenómeno de aislamiento y evolución de la biota puede estar ocurriendo en las montañas de México, en particular en las poblaciones de los bosques húmedos que después del Pleistoceno adquirieron una disposición “archipelágica”; esto significa que actualmente los bosques húmedos se distribuyen en forma de islas de hábitats donde se localizan especies y subespecies endémicas de distintos grupos taxonómicos (Cordero y Morales, 1998).

En este capítulo se presentan las regiones biológicas del estado de Puebla, agrupadas bajo criterios principalmente climatológicos (Regiones Ecológicas), biogeográficos (Provincias Biogeográficas) o vegetacionales (Ecorregiones). Enseguida se describen los tipos de vegetación del estado, así como la superficie de cada una. Por último se presentan dos estudios de caso en los que se analiza la situación de la vegetación en la Reserva de la Biosfera Tehuacan-Cuicatlán y la situación de los encinos del Estado.
REGIONALIZACIÓN BIOLÓGICA

Gonzalo Yanes Gómez

Se han hecho muchos intentos por clasificar el medio natural de México tomando como base criterios muy diversos. A pesar de su variedad, la mayoría de las propuestas tienen un rasgo en común: toman a los tipos de vegetación como primer criterio de clasificación (Neyra-González y Durand-Smith 1998). A medida que se aplican más criterios, las clasificaciones comienzan a diferir; sin embargo, las propuestas basadas principalmente en el criterio ecológico de la distribución de tipos de vegetación y tipos de ecosistemas coinciden en un nivel muy general en sus divisiones aún cuando se utilizan criterios de diferente índole (Cordero y Morales 1998). A continuación se refieren algunas clasificaciones de los ambientes del estado de Puebla, que ilustran su gran diversidad de ecosistemas.

Regiones ecológicas

Esta clasificación fue propuesta por Toledo y Ordoñez (1993), quienes definen de manera muy amplia distintos tipos de hábitats terrestres, también denominados zonas ecológicas. Caracterizan así una regionalización ecológica del país cuyos objetivos son simplificar la heterogeneidad ecológica y facilitar el reconocimiento de grandes discontinuidades en el paisaje a escala nacional (Neyra-González y Durand-Smith 1998).

Esta zonificación ecológica se basa en criterios que incluyen el tipo de vegetación, el clima y aspectos biogeográficos, por lo que cada zona ecológica es la unidad de la superficie terrestre donde se encuentran conjuntos de vegetación con afinidades climáticas e historias o linajes biogeográficos comunes. Con base en lo anterior, se presentan cinco tipos de hábitats terrestres continentales o zonas ecológicas (Figura 3.1), y su cobertura en el estado de Puebla (Cuadro 3.1).

Provincias biogeográficas y ecorregiones

Con el fin de contar con un sistema estándar de regiones naturales de utilidad práctica para la planificación y la definición de políticas de apoyo para la conservación, la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), con apoyo de la Comisión de Cooperación Ambiental de América del Norte (CCA) y con la participación de biogeógrafos, finalizó para México un ejercicio de regionalización ecológica y biogeográfica del cual se deriva un sistema con 19 provincias biogeográficas y 51 ecorregiones (Neyra- González y Durand-Smith 1998). De las 19 provincias biogeográficas, siete se encuentran en el estado de Puebla (Figura 3.2 y Cuadro 3.2). En el estado de Puebla se encuentran siete ecorregiones con base en los criterios de la CONABIO y la CCA (Figura 3.3 y Cuadro 3.3).

<table>
<thead>
<tr>
<th>Región</th>
<th>Superficie ha</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Templado subhúmedo</td>
<td>1 261 328</td>
<td>37</td>
</tr>
<tr>
<td>Trópico subhúmedo</td>
<td>825 478</td>
<td>24</td>
</tr>
<tr>
<td>Árido y semiárido</td>
<td>678 597</td>
<td>20</td>
</tr>
<tr>
<td>Templado húmedo</td>
<td>500 902</td>
<td>15</td>
</tr>
<tr>
<td>Trópico húmedo</td>
<td>157 495</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>3 423 800</td>
<td>100</td>
</tr>
</tbody>
</table>
Figura 3.1 Regiones Ecológicas del estado de Puebla.
Figura 3.2 Provincias Biogeográficas de México en Puebla.
Cuadro 3.2 Superficie por Provincias Biogeográficas de México en Puebla.

<table>
<thead>
<tr>
<th>Provincia Biogeográfica</th>
<th>Superficie ha</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eje Volcánico</td>
<td>1 635 945</td>
<td>48</td>
</tr>
<tr>
<td>Depresión del Balsas</td>
<td>876 399</td>
<td>26</td>
</tr>
<tr>
<td>Golfo de México</td>
<td>362 244</td>
<td>11</td>
</tr>
<tr>
<td>Sierra Madre Oriental</td>
<td>338 874</td>
<td>10</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>140 224</td>
<td>4</td>
</tr>
<tr>
<td>Sierra Madre del Sur</td>
<td>46 741</td>
<td>1</td>
</tr>
<tr>
<td>Altiplano Sur</td>
<td>23 371</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>3 423 800</td>
<td>100</td>
</tr>
</tbody>
</table>

Cuadro 3.3 Superficie por Ecorregiones de México en Puebla.

<table>
<thead>
<tr>
<th>Ecorregión</th>
<th>Superficie ha</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sistema Neovolcánico Transversal: lomeríos y sierras con bosques de coníferas, de encinos y bosques mixtos</td>
<td>1 040 111</td>
<td>30</td>
</tr>
<tr>
<td>2. Selvas cálido secas: depresión del Balsas con bosque tropical caducifolio y matorral xerófilo</td>
<td>1 025 749</td>
<td>30</td>
</tr>
<tr>
<td>3. Selvas cálido secas: valles y depresiones con matorral xerófilo y bosque tropical caducifolio</td>
<td>495 824</td>
<td>14</td>
</tr>
<tr>
<td>4. Selvas cálido húmedas: lomeríos con bosque mesófilo de montaña y bosque tropical perennifolio</td>
<td>305 264</td>
<td>9</td>
</tr>
<tr>
<td>5. Sierra Madre Oriental: bosques de coníferas, de encino y mixtos</td>
<td>211 939</td>
<td>6</td>
</tr>
<tr>
<td>6. Sierra Madre del Sur: sierras de Guerrero y Oaxaca con bosque de coníferas, de encino y mixtos</td>
<td>179 825</td>
<td>5</td>
</tr>
<tr>
<td>7. Sistema Neovolcánico Transversal: llanuras interiores y mesetas con pastizales y matorral xerófilo</td>
<td>165 086</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>3 423 800</td>
<td>100</td>
</tr>
</tbody>
</table>

TIPOS DE VEGETACIÓN DE PUEBLA

Instituto Nacional de Estadística, Geografía e Informática

Recopiló María Lourdes Guevara Romero

El término “tipo de vegetación” se ha utilizado para designar la composición de especies de la cubierta vegetal de una región, área o lugar. La cubierta vegetal se refiere al conjunto de especies que tienen determinadas formas de vida o también a la agrupación de especies que por sus requerimientos y tolerancias ambientales tienen características comunes (por ejemplo en su fisonomía, tamaño y desarrollo) (Neyra-González y Durand-Smith 1998). Para llevar a cabo la descripción de las comunidades vegetales se pueden considerar...
Figura 3.3 Ecorregiones de México en Puebla
varios aspectos, entre los que destacan la flora (las especies componentes), la fisonomía (o apariencia de la vegetación), la ubicación geográfica y las características climáticas y edafológicas.

Los tipos de vegetación en el estado de Puebla (Figura 3.4) se encuentran principalmente distribuidos en tres grandes grupos que son los bosques, selvas y matorrales; el resto se agrupa en vegetación inducida e hidrófila y por supuesto las grandes zonas agrícolas que cubren nuestro estado.

En el Cuadro 3.4 se presenta el número de hectáreas por tipo de vegetación.

Bosques

Los bosques son vegetacion arborea, principalmente de zonas templadas y semifrías, en climas subhúmedos a muy húmedos y a veces secos. En el estado de Puebla encontramos bosques de coníferas, de encino y mesófilo de montaña.

Los bosques de coníferas se encuentran principalmente en la Sierra Norte del estado de Puebla y ocupan 327 428.83 hectáreas que corresponden al 9.7 % de la superficie total del Estado.

El bosque de encino está constituido principalmente por especies de *Quercus* (encino) y *Pinus* (pino); son bosques por lo general bajos, con troncos delgados y de crecimiento lento y ocupan el 4.89 % de la superficie total del Estado con 165 216.79 hectáreas. Se Distribuye a lo largo de una franja climática norte-sur, que comprende las laderas occidentales de la Sierra Madre Oriental y el Eje Neovolcánico, además de pequeñas zonas sobre laderas y lomeros pertenecientes a la Sierra Madre del Sur.

El bosque mesófilo de montaña se encuentra en lugares con relieve accidentado, en laderas escarpadas y cañadas protegidas contra el viento y la insolación, ocupando un 2.9 % de la superficie del Estado. Las comunidades en estado primario son muy densas, donde los árboles alcanzan alturas

Cuadro 3.4 Superficie por tipos de vegetación

<table>
<thead>
<tr>
<th>Tipos de vegetación</th>
<th>Superficie ha</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrícola-pecuaria-forestal</td>
<td>1 676 634</td>
<td>48.97</td>
</tr>
<tr>
<td>Selva caducifolia</td>
<td>536 831</td>
<td>15.68</td>
</tr>
<tr>
<td>Bosque de coníferas</td>
<td>332 108</td>
<td>9.70</td>
</tr>
<tr>
<td>Matorral xerófilo</td>
<td>282 805</td>
<td>8.26</td>
</tr>
<tr>
<td>Vegetación inducida</td>
<td>233 160</td>
<td>6.81</td>
</tr>
<tr>
<td>Bosque de encino</td>
<td>167 423</td>
<td>4.89</td>
</tr>
<tr>
<td>Bosque mesófilo de montaña</td>
<td>99 290</td>
<td>2.90</td>
</tr>
<tr>
<td>Selva perennifolia</td>
<td>51 014</td>
<td>1.49</td>
</tr>
<tr>
<td>Zona urbana</td>
<td>27 048</td>
<td>0.79</td>
</tr>
<tr>
<td>Sin vegetación aparente</td>
<td>9 586</td>
<td>0.28</td>
</tr>
<tr>
<td>Cuerpo de agua</td>
<td>4 793</td>
<td>0.14</td>
</tr>
<tr>
<td>Especial (otros tipos)</td>
<td>1 711</td>
<td>0.05</td>
</tr>
<tr>
<td>Asentamientos humanos</td>
<td>1 027</td>
<td>0.03</td>
</tr>
<tr>
<td>Desprovisto de vegetación</td>
<td>342</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>3 423 800</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Figura 3.4 Tipos de vegetación del Estado de Puebla
hasta de 25 m como los siguientes: Liquidambar, especie característica del bosque, son frecuentes además: Quercus (encino), Clethra, Meliosma y una gran gama de epífitas, especialmente orquídeas y bromeliáceas. Lo encontramos fundamentalmente en la subprovincia del Carso Huasteco, en la sierra volcánica perteneciente al Pico de Orizaba y en las laderas orientales de la sierra Mazateca.

Matorral

El Matorral es vegetación arbustiva de altura, composición florística y densidad variable. Se encuentra generalmente en regiones áridas y semiáridas. En el estado de Puebla lo tenemos al occidente, en el valle de Tehuacán y la Sierra Negra, ocupando un 8.26 % de la superficie del Estado y con un total de 278 724.5 ha; se desarrolla en climas de tipo semiárido muy cálidos y cálidos.

En el Valle de Tehuacán y la zona de Zapotitlán cerca de las márgenes del río Manzanas hasta el municipio de Caltepec, se establece una comunidad que crece sobre un suelo calizo y sobre laderas muy inclinadas, donde dominan las especies indicadas en el Cuadro 3.5. En altitudes de 1 850 msnm se encuentran: Agave verchaffeltii y Stenocereus stellatus acompañados por algunas especies de selva baja caducifolia.

En sitio cercanos al valle de Tehuacán, en la parte baja de las estribaciones de la sierra de Zongolica, se desarrolla una comunidad con los elementos que se muestran en el Cuadro 3.6.

Este tipo de vegetación ha sufrido fuertes alteraciones en algunos lugares debido al pastoreo desordenado, principalmente de ganado caprino, lo que ha provocado que el estrato inferior presente un marcado deterioro y una reducción en la cobertura del suelo, lo que ocasiona pérdidas importantes (INEGI, 2008).

<table>
<thead>
<tr>
<th>Estrato de 8 a 10 metros</th>
<th>Estrato de 3 a 6 metros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pachycereus chrysomallus</td>
<td>Beaucarnea gracilis</td>
</tr>
<tr>
<td>Neobuxbaumia macrocephala</td>
<td>Lemaireocereus hollianus</td>
</tr>
<tr>
<td>Cephalocereus hoppenstedtii</td>
<td>Cereidiocereus plurifoliatum</td>
</tr>
<tr>
<td>Eysenhardtia polyacantha</td>
<td>Cephalocereus chrysanthus</td>
</tr>
<tr>
<td>Bursera galeottiana</td>
<td>Yucca periculosa</td>
</tr>
<tr>
<td>Estrato de 2 metros</td>
<td>Estrato inferior de 0.1 a 0.6 metros</td>
</tr>
<tr>
<td>Dodonaea viscosa</td>
<td>Pithecellobium compactum</td>
</tr>
<tr>
<td>Fouquieria formosa</td>
<td>Montana tehuacana</td>
</tr>
<tr>
<td>Salvia candida</td>
<td>Tecoma stans</td>
</tr>
<tr>
<td>Jatropha spathulata</td>
<td>Myrtillocactus geometrizans (garambullo)</td>
</tr>
<tr>
<td>Dasylirion lucidum</td>
<td>Agave potatorum</td>
</tr>
<tr>
<td>Echinocactus grandis</td>
<td>Ferocactus robustus</td>
</tr>
<tr>
<td>Neomammillaria mystax</td>
<td>Ferocactus nobilis</td>
</tr>
<tr>
<td>Mammillaria vipherina</td>
<td>Neomammillaria mystax</td>
</tr>
</tbody>
</table>

Cuadro 3.5 Comunidad vegetal del Valle de Tehuacán y la zona de Zapotitlán cerca de las márgenes del río Manzanas hasta el municipio de Caltepec.
Cuadro 3.6 Comunidad vegetal en sitios cercanos al valle de Tehuacán, en la parte baja de las estribaciones de la sierra de Zongolica

<table>
<thead>
<tr>
<th>Estrato de 8 a 18 metros</th>
<th>Estrato de 5 a 8 metros (elementos pertenecientes a la selva baja)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neobuxbaumia macrocephala</td>
<td>Beaucarnea gracilis (sotolín)</td>
</tr>
<tr>
<td>N. mecalensis</td>
<td>Bursera arida (cajú, copal)</td>
</tr>
<tr>
<td>N. tetetzo (tetelcho)</td>
<td>B. galeottiana</td>
</tr>
<tr>
<td>Cephalocereus chrysanthus</td>
<td>B. hindsiana</td>
</tr>
<tr>
<td>C. hoppenstedtii (órgano)</td>
<td>Castela tortuosa</td>
</tr>
<tr>
<td>Coryphantha pallida</td>
<td>Celtis pallida</td>
</tr>
<tr>
<td>Myrtillocactus geometrizans var. grandiareolatus (garambullo)</td>
<td>Cercidium praecox</td>
</tr>
<tr>
<td>Estrato arbustivo de 1 a 3 metros</td>
<td>Condalia mexicana</td>
</tr>
<tr>
<td>Opuntia sp. (nopal)</td>
<td>Cordia brevispicata</td>
</tr>
<tr>
<td>Hechtia sp. (guapilla)</td>
<td>Croton morifolius</td>
</tr>
<tr>
<td>Jatropha urens</td>
<td>Acacia macracantha</td>
</tr>
<tr>
<td>Cercidium praecox</td>
<td>A. purpusii</td>
</tr>
<tr>
<td>Plukenetia rubra (cacaloxóchil)</td>
<td>A. stricta (huizaches)</td>
</tr>
<tr>
<td>Euphorbia sp.</td>
<td>Opuntia decumbens</td>
</tr>
<tr>
<td>Fouquieria farnosula</td>
<td>O. depressa</td>
</tr>
<tr>
<td>Kanwinka humboldtiana</td>
<td>O. pumila (nopales)</td>
</tr>
<tr>
<td>Myrtillocactus sp. (garambullo)</td>
<td>Ferocactus robustus</td>
</tr>
<tr>
<td>Malpighia galeottiana</td>
<td>Helabravao chende</td>
</tr>
<tr>
<td>Mimosa lacerata</td>
<td>Neomammillaria carnea</td>
</tr>
<tr>
<td>Pedilanthus asiflor</td>
<td>N. elegans</td>
</tr>
<tr>
<td></td>
<td>Echinocactus grandis</td>
</tr>
</tbody>
</table>

Selvas

Las selvas son comunidades formadas por vegetación arbórea de origen meridional (Neotropical), generalmente de climas cálido, húmedo, subhúmedo y semiseco. Están compuestas por la mezcla de un gran número de especies, muchas de las cuales presentan contrafuertes o aletones. Poseen bejucos, lianas y plantas epífitas, frecuentemente con árboles espinosos entre los dominantes. En el estado de Puebla tenemos selvas de tipo caducifolia, perennifolia y subcaducifolia.

La selva caducifolia ocupa un 15.68 % de la superficie del estado y se localiza al sur, sobre las laderas abruptas de la Sierra Madre del Sur; abarca casi por completo la zona semiárida y subhúmeda de la Mixteca Alta, en los límites con los estados de Morelos, Guerrero y Oaxaca.
Los elementos que conforman este tipo de vegetación alcanzan hasta 10 metros de altura; la mayoría de las especies pierden su follaje durante la época seca del año, los troncos de los árboles con frecuencia son retorcidos y se ramifican a corta altura del suelo, mientras que otros presentan colores llamativos, superficies brillantes y desprenden su corteza en forma de láminas como en el caso de algunas especies de Bursera. La comunidad que domina en la parte oriental de la mixteca, se extiende desde la barranca de Tepemexquila en el municipio de Jalpan hasta la sierra Grande en los alrededores de Acatlán, a más de 1 600 msnm. Algunas especies reportadas para esta comunidad se indican en el Cuadro 3.7.

Una de las zonas más importantes en el Estado, debido al tipo de vegetación que ahí se desarrolla, es la región del valle de Tehuacán, situada en la parte alta de la cuenca del río Salado. Aquí se localiza una selva muy peculiar, donde la presencia de cactáceas columnares o candelabiformes influye en la fisonomía de la vegetación (Bravo-Hollis, 1978) (Cuadro 3.8).

Cuadro 3.7 Comunidad vegetal que domina en la parte oriental de la mixteca

<table>
<thead>
<tr>
<th>Estrato de 4 a 6 metros</th>
<th>Estrato de 1.5 a 3 metros</th>
<th>Estrato de 0.3 a 0.7 metros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiba sp. (pochote)</td>
<td>Bursera fagaroides</td>
<td>Hechtia sp.</td>
</tr>
<tr>
<td>Bursera sp.</td>
<td>Mimosa purpusii</td>
<td>Aristida sp.</td>
</tr>
<tr>
<td>Fouquieria formosa (tencha)</td>
<td>Mimosa sp.</td>
<td>Agave sp.</td>
</tr>
<tr>
<td>Stenocereus weberi</td>
<td>Jatropha spathulata</td>
<td>Mammillaria sp.</td>
</tr>
<tr>
<td>Beaucarnea gracilis (sotolín)</td>
<td>Opuntia sp. (nopal)</td>
<td>Sida sp. (escobilla)</td>
</tr>
<tr>
<td>Pachycereus sp.</td>
<td>Acacia cymbisina (espino)</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 3.8 Comunidad vegetal del Valle de Tehuacán

<table>
<thead>
<tr>
<th>Estrato de 15 metros</th>
<th>Estrato de 5 a 8 metros</th>
<th>Estrato de 0.5 a 2 metros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neobuxbaumia tetetzo</td>
<td>Acacia subangulata</td>
<td>Jatropha urens</td>
</tr>
<tr>
<td>N. macrocephala (falso tetheco) especie endémica de la región</td>
<td>Agave macrocantha</td>
<td>Euphorbia sp.</td>
</tr>
<tr>
<td>A. purpusii (huizaches)</td>
<td>Fouquieria formosa</td>
<td></td>
</tr>
<tr>
<td>Yucca periculosa</td>
<td>Beaucarnea gracilis</td>
<td>Karwinskia humboldtiana</td>
</tr>
<tr>
<td>Myrtillocactus geometrizans var. grandiareolatus</td>
<td>Bursera arida</td>
<td>Malpighia galeottiana</td>
</tr>
<tr>
<td></td>
<td>B. galeottiana</td>
<td>Mimosa lacera</td>
</tr>
<tr>
<td></td>
<td>B. hindsiana (cuajiotes)</td>
<td>Pedilanthus aphyllus</td>
</tr>
<tr>
<td></td>
<td>Castela tortuosa</td>
<td>Pseudosmoringium andriexi</td>
</tr>
<tr>
<td></td>
<td>Celtis pallida</td>
<td>Tecom stans</td>
</tr>
<tr>
<td></td>
<td>Cercidium praecox</td>
<td>Opuntia decumbens</td>
</tr>
<tr>
<td></td>
<td>Condalia mexicana</td>
<td>O. depressa</td>
</tr>
<tr>
<td></td>
<td>Cordia brevispicata</td>
<td>O. pilifera</td>
</tr>
<tr>
<td></td>
<td>Croton morfolius</td>
<td>O. pumila</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O. velutina var. velutina (nopales)</td>
</tr>
</tbody>
</table>
En general, las comunidades que se encuentran sobre pendientes accidentadas están conservadas, debido a su difícil acceso; pero en terrenos con pendientes menos abruptas, generalmente se encuentran en estado secundario (arbóreo, arbustivo y herbáceo), debido al desmonte y quemadas para inducir el crecimiento de gramíneas para actividades agrícolas poco productivas. Debido a la escasez de agua, los suelos poco profundos y pedregosos son fácilmente erosionables.

La selva perennifolia se encuentra ocupando 50131 ha correspondiente al 1.48 % de la superficie del Estado; en la actualidad este tipo de vegetación se encuentra en condición secundaria y se localiza al norte y sureste de la entidad.

En el primer caso se presenta a lo largo de la Vertiente del Golfo Norte y sobre las laderas del Carso Huasteco, mientras que en el sureste se desarrolla al oriente de la Sierra Madre del Sur, en la sierra Zongolica y noreste de la Sierra Negra, a más de 1 000 msnm. Los árboles pierden sus hojas hasta en un 30 % durante la temporada seca del año, sobresalen elementos arbóreos de alturas por encima de los 15 m, sus troncos son delgados y por lo general presentan contrafuertes; existe una gran cantidad de enredaderas y lianas.

Hacia la parte sur del Estado, desde el municipio de Eloxochitlán hasta San Sebastián Tlacotepec, esta comunidad –en estado secundario– se presenta sobre lomeríos y cañadas (Cuadro 3.9).

En el municipio de Hueytlalpan y hasta Francisco Z. Mena, donde la altitud va de los 200 metros en adelante, existen poblaciones de selva alta perennifolia en estado secundario (Cuadro 3.10).

Cuadro 3.9 Comunidad vegetal del sur del estado

<table>
<thead>
<tr>
<th>Estrato de 15 metros</th>
<th>Estrato de 10 metros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordia alliodora (xochicuahui)</td>
<td>Heliocarpus appendiculatus (jonote)</td>
</tr>
<tr>
<td>Spondias mombin (jobo)</td>
<td>Cecropia obtusifolia (guarumbo)</td>
</tr>
<tr>
<td>Acacia glomerosa (guaje silvestre)</td>
<td></td>
</tr>
<tr>
<td>Bursera simaruba (palo mulato)</td>
<td></td>
</tr>
<tr>
<td>Pouteria sp.</td>
<td></td>
</tr>
<tr>
<td>Dendropanax sp. (tronadora)</td>
<td></td>
</tr>
<tr>
<td>Talatina mexicana (bellota)</td>
<td></td>
</tr>
<tr>
<td>Rollinia sp. (chirimoya)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estrato inferior a 2 metros</th>
<th>Estrato de 4 a 6 metros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miconia argentea (textuátl)</td>
<td>Zanthoxylum sp.</td>
</tr>
<tr>
<td>Cupania glabra</td>
<td>Spondias mombin (jobo)</td>
</tr>
<tr>
<td>VIPsia sp. (palo café)</td>
<td>Lonchocarpus sp. (frijolillo)</td>
</tr>
<tr>
<td>Bunchosia sp. (icochocua)</td>
<td>Plumeria rubra</td>
</tr>
<tr>
<td>Cestrum sp. (huele de noche)</td>
<td>Spondias sp.</td>
</tr>
<tr>
<td>Tabernamontana chrysocarpa</td>
<td>Trema micrantha (ixpepe)</td>
</tr>
<tr>
<td>Verbesina sp.</td>
<td>Piper sanctum (hoja santa)</td>
</tr>
<tr>
<td>Lonchocarpus sp. (frijolillo)</td>
<td></td>
</tr>
<tr>
<td>Plumeria rubra</td>
<td></td>
</tr>
<tr>
<td>Spondias sp.</td>
<td></td>
</tr>
<tr>
<td>Trema micrantha (ixpepe)</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 3.10 Comunidad vegetal de Hueytlápan y Francisco Z. Mena

<table>
<thead>
<tr>
<th>Estrato de 2.5 a 4 metros</th>
<th>Estrato de 1.2 metros</th>
<th>Estrato inferior a 0.6 metros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugenia sp.</td>
<td>Croton niveus</td>
<td>Lippia sp.</td>
</tr>
<tr>
<td>Eupatorium odorata</td>
<td>Cnidoscolus urens</td>
<td>Senecio sp.</td>
</tr>
<tr>
<td>Solanum verbascifolium</td>
<td>Annona globiflora</td>
<td>Scleropogon uniseriatis</td>
</tr>
<tr>
<td>Acacia famesiana</td>
<td>Eupatorium sp.</td>
<td>Lantana camara</td>
</tr>
<tr>
<td>Leucaena esculenta</td>
<td>Tabernaemontana citrifolia</td>
<td>Véronia sp.</td>
</tr>
<tr>
<td>Parmentiera edulis (chote)</td>
<td>Nectandra sp.</td>
<td></td>
</tr>
<tr>
<td>Psidium edulis (capulín)</td>
<td>Cassia sp.</td>
<td></td>
</tr>
<tr>
<td>Croton draco (sangre de grado)</td>
<td>Psidium sartorianum</td>
<td></td>
</tr>
<tr>
<td>Guazuma ulmifolia (guácima)</td>
<td>Verbena persicifolia</td>
<td></td>
</tr>
<tr>
<td>Inga spp.</td>
<td>Eugenia sp.</td>
<td></td>
</tr>
</tbody>
</table>

Este tipo de vegetación ha sido intensamente explotada, por lo que en la actualidad prevalece la vegetación secundaria arbórea y arbustiva, denominada acahuil y que es resultado de un nomadismo agrícola intenso, donde los terrenos se cultivan mediante prácticas de roza-tumba-quema durante algunos años, para dejarlos descansar durante períodos largos (máximo 10 años) y posteriormente reanudar dicho uso. Como consecuencia, la vegetación se mantiene en forma casi permanente como secundaria. También es común la tala selectiva con fines forestales, para el establecimiento de cultivos permanentes de sombra como los cafetales, o para la apertura de grandes terrenos destinados al establecimiento de pastizales, cultivados o inducidos, ya que la actividad ganadera en esta región ha proliferado en gran medida (INEGI 2008).

Agricultura

La agricultura ocupa el mayor porcentaje de superficie, ya que tiene un 48.97 % de la superficie del estado, correspondiente a 1 653 046 ha; aquí también se agrupan las actividades pecuarias forestales.

La agricultura de temporal y riego se encuentra en diversas zonas, sin embargo su máximo desarrollo lo tiene hacia la región centro-sur. En buena parte de los bosques y selvas donde las condiciones climáticas son favorables, se han establecido pastizales inducidos y en menor grado cultivados, que sostienen una ganadería no muy vigorosa; sin embargo, es aquí donde este tipo de actividad encuentra su mejor desarrollo. La agricultura nómada es de gran importancia, debido al constante crecimiento de áreas sometidas a esta práctica y se caracteriza por el alto grado de perturbación que propicia en la vegetación natural y la reducción de un gran número de comunidades, que al ser sometidas al cultivo degradan los terrenos y se mantienen en forma casi permanente a nivel de vegetación secundaria.

La explotación forestal también ha propiciado el deterioro de la vegetación y del suelo, debido a la falta de organización y planeación para el aprovechamiento de los recursos; frecuentemente se propician quemas e incendios para convertir bosques en terrenos de pastoreo o de cultivos, con rendimientos bajos y acelerando la erosión del suelo (INEGI 2008).
En la Reserva de la Biosfera Tehuacán-Cuicatlán se identifican ocho sistemas ambientales u objetos de conservación, como se muestra a continuación:

Bosques de cactáceas columnares

La extensión de este objeto es de 43 073.33 ha y forma parte del matorral xerófilo, en una subclaseación de matorral crasicaule, donde las especies predominantes son las cactáceas columnares. Esta asociación se compone de tales cactáceas columnares, simples, ramificadas o en forma de candelabros de dos a 15 metros de altura. También se entremezclan elementos arbóreos del bosque espinoso o selva baja.

Bosque mesófilo de montaña

Este tipo de vegetación se establece entre los 1 000 y los 2 500 msnm. El sistema ambiental tiene una extensión de 1 391.63 ha. Se distribuye en las laderas y cañadas húmedas, forma bosques densos y el estrato principal está formado por árboles de siete a 20 metros mientras que el estrato inferior mide de 1.5 a seis metros; las epífitas y rupícolas son uno de los grupos más diversos.

Matorral xerófilo

Este tipo de vegetación incluye el matorral crasicaule y el matorral desértico rosetófilo. En los izotales dominan especies arrosetadas de 4 m de altura como las siguientes: Yucca periculosa, Beaucarnea stricta y Nolina sp. asociadas a Parkinsonia praecox, Ipomoea arborescens, Myrtillocactus geometrizans, Stenocereus stellatus y especies de Acacia, Mimosa y Opuntia. Este objeto tiene una extensión de 122 785.29 ha y se distribuye ampliamente en las subregiones del Filo de Tierra Colorada, Tehuacán-Sierra Negra, en la Mixteca Poblana, así como en parte de la Mixteca Chazumba y la Cañada Oaxaqueña.

Comunidades riparias

Se incluye a los carrizales que se establecen en orillas de canales o lagunetas en elevaciones de 1 000 a 2 000 msnm, sobre suelos arenosos-limosos y se componen principalmente de Arundo donax. También se incluye vegetación flotante y sumergida que se establece sobre suelos inundables donde se forman charcas y lagunetas. Se distribuye en la región de Cuicatlán a lo largo de todas las corrientes permanentes en la ribera del “río Grande” y sus afluentes; también se ha observado en los ríos Cañahualtepec en Santiago Quilotepec, “Las Vueltas” en San Juan Bautista Atatlahuca y en el “El Sabino” en Santa María Tecomavaca. Los bosques de galerías, aunque poco representados en la reserva, se pueden considerar asociaciones vegetales con Taxodium mucronatum, Astianthus viminalis, Parkinsonia aculeata, Vitex mollis, Baccharis salicifolia, Dodonaea viscosa, Ipomoea murucoides y Lantana camara, etc. Debe considerarse además la fauna asociada, como nutria de río, peces, crustáceos, anfibios y reptiles.

Selva baja caducifolia

Este es el objeto de conservación con mayor extensión en el ANP, aunque se circunscribe a la subregión cañada oaxaqueña y en algunas porciones del valle de Tehuacán. Está compuesta por árboles que no rebasan los 6 m de altura, aunque se
puede encontrar elementos de hasta 15 m Abarca una extensión de 187 087.02 ha.

Bosque de coníferas y latifoliadas

Este objeto de conservación está conformado por asociaciones vegetales de pino, pino-encino, encino-pino o encinos, incluyendo a comunidades de enebro. Abarca una extensión de 99 593 ha. Los bosques de coníferas se distribuyen en grandes extensiones de la cañada oaxaqueña, principalmente en las regiones altas de la sierra Negra y Juárez, así como en la región de los Pápalo, Tepeuxila y Monte Flor, en elevaciones por arriba de los 1 000 msnm.

Este tipo de bosque puede presentar especies exclusivamente del género *Pinus* o compartir hábitats con especies del género *Quercus*, *Liquidambar* y *Alnus*; el estrato principal está compuesto por árboles de ocho a 20 m de altura y el estrato arbustivo puede presentar elementos de dos a cuatro metros de altura. Las epífitas no son abundantes pero es frecuente encontrar especies de las familias *Orchidaceae* y *Bromeliaceae*.

Respecto de los **Encinares**, se debe señalar que se ubican en amplias extensiones de la Mixteca baja. Aunque la composición de especies varía de acuerdo a la región, en general están conformados por árboles de 20 m de altura. Los arbustos forman estratos de dos a cinco metros de altura.

El **Bosque de Enebro** recibe diferentes nombres y corresponde a la comunidad de bosque escamifolio o de táscate en el Inventario Nacional Forestal. Estas asociaciones se ubican en manchones relictuales en el Filo de Tierra Colorada en Puebla. Esta vegetación se distribuye entre los 1 800 y los 2 500 msnm, donde predomina el clima templado semiárido en lugares abiertos con suelos profundos o rocosos; existe un estrato arbóreo de tres a cinco metros, en tanto que el estrato herbáceo presenta variaciones florísticas, ya que se desarrolla en sitios desmontados.

El bosque de *Cupressus* que se desarrolla a mayor altitud, con mayor humedad y en sitios más fríos, constituye una variable ecológica importante que alcanza de 20 a 35 m de altura, en asociación con *Abies*, *Pinus* y *Quercus*.

Refugios

Son sitios donde se ubican comunidades relictuales o especies de alto valor que por su distribución restringida, bajo número de población o condición crítica de conservación requieren de un cuidado especial. Se consideran espacios importantes para la protección de especies endémicas o que cuentan con algún status de protección como en los siguientes casos: *Ara militaris* (guacamaya verde), *Lontra longicaudis* (nutria), *Micrathene whitneyii* (búho colicorto), *Dioon caputoi* (palma real), *Fouquieria purpusii* y *Beaucarnea* sp. (sotolin, pata de elefante). Hasta ahora se han identificado las siguientes especies de plantas: *Echinocactus platycanthus*, *Ferocactus haematacanthus*, *Echeveria purpusii*, *E. leucotricha*, *E. leuei*, *Dahlia pachyphylla*, *Laelia halbingeriana*, *Villadia imbricada*, *Sedum papalotensis*, *S. hernandezii*, *Brahea nitida*, *Mammillaria variegulata*, *M. dixiantocentron*, *M. huitzilopochtli*, *M. pectinifera* y *Agave titanota*, entre otras, así como una comunidad de murciélagos en la Cueva del Obispo, Puente Colosal.

Palmares

Se ubican en elevaciones que van de los 600 a los 2 000 msnm, en la Mixteca Alta (Coixtlahuaca y Nochixtlán) y en el Valle de Tehuacán, aunque se tienen registros en la Mixteca Chazumba y en la Mixteca Poblana, en las inmediaciones de Caltepec, Santa Ana Teloxtoc y Nopala. Cuenta con una extensión de 15 466.37 ha. Se presentan asociaciones diferentes adaptadas a climas semicálidos o templados semiáridos, sobre suelos calizos dominados por palmas de ocho a 15 metros de altura como *Brahea dulcis* o *B. nitida*. Es importante señalar que palmares de *Sabal mexicana* o de *Brahea dulcis* son favorecidos por la perturbación que provocan incendios periódicos (Miranda y Hernández, 1963, Rzedowsky, 1978).
Los bosques de *Quercus* o encinares constituyen un tipo de vegetación característico de las montañas mexicanas de clima templado, frecuentemente mezclados con los bosques de Pinos u otras coníferas. Se encuentran principalmente en las zonas montañosas de México, en elevaciones desde el nivel del mar hasta 3 100 msnm, aunque el 95 % de su diversidad se encuentra concentrada en las Sierra Madre Oriental, Sierra Madre Occidental, Eje Volcánico Transversal, Sierra Madre del Sur, Norte de Oaxaca, Chiapas, Baja California y en el Altiplano Mexicano, más frecuentemente en elevaciones de 1 000-3 000 msnm (Rzedowski 1978, Valencia-Avalos 2004).

A pesar de su abundancia en las zonas templadas, elementos de este género se encuentran en las zonas húmedas, cálido húmedas y áridas, con diferente geología y suelos, lo que da lugar a un número considerable de especies de porte arbóreo, arbustivo, matorral o postrado, lo que en ocasiones crea confusiones sobre su forma biológica.

En 1990 los bosques de encino ocupaban el 4.29 % de la superficie nacional, sin embargo hay que recordar que las especies integrantes del género *Quercus* se encuentran también en el bosque de coníferas, que ocupa el 8.66 %, y otros tipos de vegetación, por lo que es difícil estimar correctamente su cobertura (Rzedowski 1978, SARH 1992, Flores y Geréz 1994).

En términos de conservación, los bosques de encino son muy importantes pues contienen hasta 7 000 especies de fanerógamas, de las cuales un 70 % son endémicas (Rzedowski 1992a y b), por lo que su valor biológico queda al descubierto.

El estado de Puebla tiene una superficie de 34 237 km², de los cuáles según la SAHOP (1981), tenía aproximadamente un 10 % de bosque de encino, lo que quiere decir una superficie de 3 423 km² aproximadamente. Años más tarde, el Inventario Nacional Forestal (INFGV), (SARH 1992) reportó que el 0.96 % de la superficie total conservada corresponde a Bosque de encino, es decir, 328.67 km² (Flores y Geréz 1994). Las dos cifras mencionadas muestran una diferencia diez veces más grande entre ellas o bien una gran destrucción de esta cubierta vegetal, por lo que es necesario revisar cuidadosamente la cobertura actual.

En cuanto a diversidad se refiere, Vázquez (1992) menciona para Puebla la existencia de 32 taxones y González (1993) contabiliza 55 especies, de las cuales únicamente 41 especies han sido mencionadas en los últimos 30 años. Sin embargo, revisando el Herbario de la Benemérita Universidad Autónoma de Puebla, y su base de datos, este número asciende a 43 taxones. Con estas cifras se pone de manifiesto que la diversidad del género *Quercus* en el estado lo coloca entre los 5 más ricos en el género, después de Nuevo León, Veracruz, Oaxaca y Jalisco (González 1993, Valencia-Avalos 2004, Valencia-Avalos y Nixon 2004).

En el Cuadro 3.11 se enlistan las especies de Quercus para Puebla y las Regiones Fisiográficas donde se han colectado. Aquí se puede observar que se encuentran principalmente en el Bosque de Quercus, o de Pino-Encino en zonas templadas y en partes de Bosques Húmedos Perenifolios ubicados en la Sierra Madre Oriental, donde se
han llegado a mencionar encinos hasta de 30 m de altura (Quercus corrugata) o matorrales arbustivos como las poblaciones de *Q. repanda* en Tetela de Ocampo, que no sobrepasan los 50 cm de altura. (Cuadro 3.11).

En particular, la Sierra Madre Oriental es la región con mayor diversidad con 29 especies, seguida del Eje Volcánico Transversal con 21 y el Sistema Montañoso del Norte de Oaxaca con 15. La zona con menor diversidad es la región de la Depresión del Balsas con cuatro especies, lo que puede explicarse también por el menor número de colectas en esa zona. Cabe hacer la aclaración de que se debe realizar más trabajo en la Planicie Costera Nororiental ya que actualmente no se tienen registros de la zona.

Un hecho interesante es que la mayoría de los encinos rojos se encuentran en los bosques húmedos de la Sierra Madre Oriental, mientras que la mayoría de los encinos blancos se encuentran en las zonas secas del Sistema Montañoso del Norte de Oaxaca, la Depresión del Balsas y las partes secas del Eje Volcánico Transversal. En general la proporción de encinos rojos a blancos es 1:1, lo que coincide muy bien con el patrón que los encinos tienen en México.

Como ha sido mencionado por Rzedowski (1978), los bosques de encino constituyen zonas ideales para los asentamientos humanos, hecho que ha contribuido a su explotación de una manera intensiva y destructiva. El uso de los encinos como fuente de combustible (como leña y carbón) ocurre desde hace varios siglos, lo que ha contribuido a la erosión de sus terrenos, con un efecto deletéreo del azolve sobre presas y lagos, por lo que es necesario conservarlos, restaurarlos y evitar su destrucción. El caso de la Presa de Valsequillo es un claro ejemplo de ello.

Por otra parte, los encinares están considerados como una de las zonas más ricas en diversidad y endemismos, lo que aunado a los servicios ambientales que proporciona a las regiones donde se encuentran, hace prioritaria su conservación. De aquí deriva una importante recomendación a detener el crecimiento excesivo que la zona central de Puebla está teniendo, como en el caso de la capital del estado, donde el crecimiento de la mancha urbana amenaza con destruir totalmente los bosques de encino y de encino-pino.

Cuadro 3.11 Lista de especies del género *Quercus* que se encuentran en cuatro regiones fisiográficas del estado de Puebla. SMO= Sierra Madre Oriental; EVT= Eje Volcánico Transversal; DB= Depresión del Balsas y SMNO= Sistema Montañoso del Norte de Oaxaca

<table>
<thead>
<tr>
<th>Especies</th>
<th>SMO</th>
<th>EVT</th>
<th>DB</th>
<th>SMNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección Lobatae o encinos rojos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. acherophylla Trel.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. acutifolia Née</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. aff. conspersa Benth.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. affinis Scheidw.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. candidans Née</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. castanea Née</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. crassifolia Humb. & Bonpl.</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. crassipes Humb. & Bonpl.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continua)
Continúa cuadro 3.11

<table>
<thead>
<tr>
<th>Especies</th>
<th>SMO</th>
<th>EVT</th>
<th>DB</th>
<th>SMNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. depressa Humb. & Bonpl.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. dysophyla Benth.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. eduardii Trel.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. elliptica Née</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. hirtifolia Vazquez, Valencia & Nixon</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. laurina Humb. & Bonpl.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. mexicana Humb. & Bonpl.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. sapotifolia Liebm.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. sartorii Liebm.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. scytophylla Liebm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. sp. nov.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. trinitatis Trel.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. urbanii Trel.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. xalapensis Humb. & Bonpl.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>18</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sección Quercus o encinos blancos</th>
<th>SMO</th>
<th>EVT</th>
<th>DB</th>
<th>SMNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. corrugata Hook.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. desentricola Trel.</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. diversifolia Née</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. frutex Trel.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. germana Cham. & Schild.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. glabrescens Benth.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. glaucodes Mart. & Gal.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Q. greggii Trel.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. laeita Liebm.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. lancifolia Cham. & Schild.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. liebmanni Oersted</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. magnollifolia Née</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. microphylla Née</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continúa cuadro 3.11

<table>
<thead>
<tr>
<th>Sección Quercus o encinos blancos</th>
<th>SMO</th>
<th>EVT</th>
<th>DB</th>
<th>SMNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. obtusata Humb. & Bonpl.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Q. oleoides Schltdl. & Cham.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. polymorpha Schltdl. & Cham.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. pringlei Seem.</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. repanda Humb. & Bonpl.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. rugosa Née</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Q. sebífera Trel</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. splendens Née</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Subtotal</td>
<td>11</td>
<td>13</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>21</td>
<td>4</td>
<td>15</td>
</tr>
</tbody>
</table>

CONCLUSIÓN

Puebla presenta una gran cantidad de ecosistemas y tipos de vegetación por su posición latitudinal y por su variación altitudinal. En él se encuentran representados muchos de los tipos de vegetación de México, y cinco de las 19 provincias biogeográficas del país, lo que lo convierte en un estado privilegiado en cuanto a diversidad de ecosistemas se refiere. Lamentablemente, muchos de ellos se encuentran perturbados o fuertemente degradados, lo que representa una pérdida lamentable para la región y el país. Como fuente de riqueza natural, los ecosistemas de Puebla deben ser restaurados, manejados y conservados apropiadamente en beneficio de generaciones futuras.
LITERATURA CITADA

Herbario de la Benemérita Universidad Autónoma de Puebla. HUAP. 2008. Base de datos del Herbario de la Benemérita Universidad Autónoma de Puebla. BIOTICA. BUAP. Puebla.

Calothorax pulcheren (colibri) en el Parque Estatal Lázaro Cárdenas del Río (Flor del Bosque).
Foto: Oscar Villareal.
INTRODUCCIÓN
Lucia López Reyes
y Moisés Graciano Carcaño Montiel

Las condiciones generadas por la topografía en el estado de Puebla (ver Capítulo 2, Medio Físico) ha tenido como consecuencia una gran diversidad de especies, ubicando al estado como aportador a la diversidad Nacional ya que cuenta con 4 426 especies vegetales, 1 274 especies animales, 131 de hongos, 165 de protistas y 30 de bacterias, siendo estas últimas las menos representadas. En este capítulo se describen los grupos de organismos que han sido estudiados en el estado de Puebla, las cuales se representan tomando en cuenta sus niveles de organización celular y se dividen en: bacterias, hongos, protistas, plantas y animales. La diversidad de especies de organismos en Puebla, tanto microscópicas como macroscópicas, consecuencia de la variabilidad de hábitat, contribuye con 6 026 especies a la diversidad nacional y mundial.

La descripción de la diversidad biológica en el estado de Puebla se aprecia en los diferentes grupos de organismos recopilados por los expertos en el área, quienes los concretan en resúmenes y listados existentes en bancos de información presentes en la Benemérita Universidad Autónoma de Puebla, la Universidad Nacional Autónoma de México, el Colegio de Posgraduados Campus Puebla, la Universidad de las Américas Puebla, Instituto de Ecología A. C., la Universidad Veracruzana, el Instituto Tecnológico Superior de Zacapoaxtla, la SMNR y ONGs. Es importante resaltar que los datos presentados en este capítulo son producto de la recopilación en diferentes años de investigación.

DIVERSIDAD DE BACTERIAS
Lucia López-Reyes; Moisés Graciano Carcaño-Montiel;
Rocio Pérez-y-Terrón y Luis Ernesto Fuentes-Ramirez

Introducción

Los microorganismos incluidos en el grupo de las bacterias y las Archaea, conocidos como procariontes, son seres microscópicos unicelulares (generalmente desde 0.2 hasta cinco milésimas de milímetro) que no poseen en su interior organelos (núcleo, mitocondrias, aparato de Golgi, etc.) como los que tienen los eucariontes. Las bacterias tienen nucleoide, citoplasma, membrana celular, pared celular, flagelos para su movimiento, fimbria para su adhesión a superficies y pili, usados durante el intercambio de DNA con otras células bacterianas. Además del DNA cromosomal, es común la presencia de DNA denominado plasmídico y que muchas veces tiene relevancia para funciones bacterianas específicas tales como causalidad de enfermedades, degradación de compuestos tóxicos, resistencia a antibióticos, etc. Las bacterias se distinguen de las Archaea en la integración de muchos de sus componentes, incluyendo paredes celulares y membranas. Incluso las Archaea están evolutivamente más cercanas a los eucariontes que a las mismas bacterias (Madigan et al. 1999; Gupta 2000).

Diversidad

Los microorganismos incluidos en los procariontes constituyen un amplio grupo de seres vivos y, de los que hasta la década pasada se tenía una idea mínima respecto de su diversidad real. La utilización de técnicas para la investigación de bacterias no
Los cultivables permiten reconocer que la diversidad de estos organismos es mayor de lo que se pensaba. Adicionalmente, el conocimiento de esta diversidad incrementará a medida que se exploren nuevos sitios. Con base en modelos matemáticos se ha previsto que el número de especies de procariotas en la Tierra es de aproximadamente 10 millones (Curtis et al. 2002), de los cuales actualmente sólo se conocen algunas decenas de miles. Los estudios sobre diversidad de especies de procariotas en ambientes del estado de Puebla se han enfocado hacia bacterias que crecen en medios de cultivo y, de éstas, algunos cuantos grupos que incluyen a bacterias de interés médico y bacterias asociadas a plantas (Cuadro 4.1).

Bacterias en la agricultura

El conocimiento de la diversidad de microorganismos con potencial de actividad promotora de crecimiento y desarrollo de las plantas es crucial para el manejo integral de los cultivos. La mayoría de las bacterias asociadas a plantas y que han sido estudiadas en el estado, pertenecen a los grupos bacterianos α, β y γ-Proteobacteria. Con variedades de frijol cultivadas

<table>
<thead>
<tr>
<th>Especie</th>
<th>Importancia</th>
<th>Lugar de aislamiento</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas caviae</td>
<td>Fosfosolubilizador asociado a maíz</td>
<td>San Antonio Virreyes</td>
<td>Salas-Moras 2000</td>
</tr>
<tr>
<td>Acinetobacter calcoaceticus</td>
<td>Fosfosolubilizador asociado a maíz</td>
<td>Tenextepec</td>
<td>Salas-Moras 2000</td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td>Aislado de paciente</td>
<td>Ciudad de Puebla</td>
<td>Díaz-Muñoz 2007</td>
</tr>
<tr>
<td>Azospirillum brasilense</td>
<td>Inoculante para cebada</td>
<td>Cuyoaco</td>
<td>Rechi-Roqueñi 1992</td>
</tr>
<tr>
<td>Azospirillum lipoferum</td>
<td>Asociado a caña de azúcar</td>
<td>Atencingo</td>
<td>López-Reyes 1996</td>
</tr>
<tr>
<td>Azospirillum sp.</td>
<td>Asociado a Polypogon interruptus, Distichlis spicata y Juncus arcticus</td>
<td>Vicencio, San José Chiapa</td>
<td>Priego-Rojano 1996</td>
</tr>
<tr>
<td></td>
<td>Asociado a teocintle</td>
<td>San Juan Atenco</td>
<td>Carcano-Montiel et al. 2006</td>
</tr>
<tr>
<td></td>
<td>Asociado a maíz</td>
<td>San Juan Atenco</td>
<td>Vargas-Cante 2001</td>
</tr>
<tr>
<td></td>
<td>Asociado a maíz con actividad antifúngica</td>
<td>Ixtacaxtitan, Tehuacán, Tepeaca, Atlaxco, San Martín Texmelucan</td>
<td>Lozano-Flores 2004, Tapia-López 2005</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>Fosfosolubilizador asociado a maíz</td>
<td>Tenextepec</td>
<td>Salas-Moras 2000</td>
</tr>
<tr>
<td>Burkholderia gladioli</td>
<td>Fosfosolubilizador asociado a maíz</td>
<td>Equimita</td>
<td>Salas-Moras 2000</td>
</tr>
<tr>
<td>Burkholderia tropica</td>
<td>Asociado a maíz y teocintle</td>
<td>Puebla</td>
<td>Reis et al. 2004</td>
</tr>
<tr>
<td>Chromobacterium violaceum</td>
<td>Fosfosolubilizador asociado a maíz</td>
<td>San Nicolás Buenos Aires</td>
<td>Salas-Moras 2000</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>Agua, alimentos y muestras clínicas</td>
<td>Estado de Puebla</td>
<td>Montes de Oca 1975, Rodríguez-Ambriz 1990</td>
</tr>
<tr>
<td>Especie</td>
<td>Importancia</td>
<td>Lugar de aislamiento</td>
<td>Referencia</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>Fosfosolubilizador asociado a maíz</td>
<td>Tenextepec</td>
<td>Salas-Moras 2000</td>
</tr>
<tr>
<td></td>
<td>Aislado en área hospitalaria</td>
<td>Ciudad de Puebla</td>
<td>Salazar-Hernández 2006</td>
</tr>
<tr>
<td></td>
<td>Aislado de paciente</td>
<td>Ciudad de Puebla</td>
<td>Díaz-Muñoz 2007</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Aislado de paciente</td>
<td>Ciudad de Puebla</td>
<td>Díaz-Muñoz 2007</td>
</tr>
<tr>
<td>Gluconacetobacter diazotrophicus</td>
<td>Asociado a cana de azúcar</td>
<td>Atencingo</td>
<td>Fuentes-Ramírez et al. 1993, Caballero-Mellado et al. 1995</td>
</tr>
<tr>
<td></td>
<td>Asociado a café</td>
<td>Huitzilan</td>
<td>Jiménez-Salgado et al. 1997</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>Asociado a cana de azúcar</td>
<td>Atencingo</td>
<td>López-Reyes 1996</td>
</tr>
<tr>
<td></td>
<td>Aislado en área hospitalaria</td>
<td>Puebla</td>
<td>Salazar-Hernández 2006</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>Asociado a cana de azúcar</td>
<td>Atencingo</td>
<td>López-Reyes 1996</td>
</tr>
<tr>
<td>Klebsiella sp.</td>
<td>Asociado a teocintle</td>
<td>San Juan Atenco</td>
<td>Carcano-Montiel et al. 2006</td>
</tr>
<tr>
<td></td>
<td>Asociado a residuos de maiz, biodegradación de pigmentos</td>
<td>Puebla</td>
<td>Elizalde-González et al. 2009</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Agua, alimentos y muestras clínicas</td>
<td>Puebla</td>
<td>Hernández-Farfan y García-Escalante, 1997</td>
</tr>
<tr>
<td>Micrococcus sp.</td>
<td>Aislado en área hospitalaria</td>
<td>Puebla</td>
<td>Salazar-Hernández 2006</td>
</tr>
<tr>
<td>Pantoea ananatis</td>
<td>Aislado de maíz</td>
<td>Puebla</td>
<td>Pérez y Terrón et al. 2009</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Aislado en área hospitalaria</td>
<td>Puebla</td>
<td>Salazar-Hernández 2006</td>
</tr>
<tr>
<td></td>
<td>Aislado de paciente</td>
<td>Puebla</td>
<td>Díaz-Muñoz 2007</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Aislado en área hospitalaria</td>
<td>Puebla</td>
<td>Salazar-Hernández 2006</td>
</tr>
<tr>
<td></td>
<td>Aislado de paciente</td>
<td>Puebla</td>
<td>Díaz-Muñoz 2007</td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>Fosfosolubilizador asociado a maíz</td>
<td>Puebla</td>
<td>Salas-Moras 2000</td>
</tr>
<tr>
<td>Raoultella planticola</td>
<td>Asociado a cana de azúcar</td>
<td>Atencingo</td>
<td>López-Reyes 1996</td>
</tr>
<tr>
<td>Rhizobium leguminosarum</td>
<td>Fijación de nitrógeno en frijol</td>
<td>Estado de Puebla</td>
<td>Piñero et al. 1988</td>
</tr>
<tr>
<td>Rhizobium etli</td>
<td>Asociación frijol-maíz</td>
<td>San Pedro Cholula</td>
<td>Gutiérrez-Zamora y Martínez-Romero 2001</td>
</tr>
<tr>
<td></td>
<td>Fijación de nitrógeno en frijol</td>
<td>San Miguel Acuexcomac</td>
<td>Silva et al. 1999; Silva et al. 2003</td>
</tr>
<tr>
<td></td>
<td>Fijación de nitrógeno en ayocote</td>
<td>San Miguel Acuexcomac</td>
<td>Silva et al. 1999; Silva et al. 2003</td>
</tr>
<tr>
<td>Rhizobium gallicum</td>
<td>Fijación de nitrógeno</td>
<td>San Miguel Acuexcomac</td>
<td>Silva et al. 1999; Silva et al. 2003</td>
</tr>
</tbody>
</table>
en Puebla se forman asociaciones simbióticas con diversos genotipos de las especies *Rhizobium leguminosarum* var. *phaseoli* (Piñero et al. 1988), *R. etli* (Silva et al. 1999; Silva et al. 2003) y *R. gallicum* (Silva et al. 2003), aunque ésta última se ha encontrado solamente en *Phaseolus vulgaris*. Las poblaciones de las especies *R. etli* y de *R. gallicum* que colonizan al frijol en San Miguel Acuxcomac mantienen intercambio genético solo con individuos de su misma especie (Silva et al. 2003). Estas asociaciones, en condiciones de baja fertilización nitrogenada, podrían resultar benéficas para los cultivos. En campos tradicionales de milpa de Puebla con cultivo simultáneo de maíz y distintas razas de frijol ha sido posible encontrar a *Rhizobium etli* asociada con ambas plantas (Gutierrez-Zamora y Martinez-Romero 2001).

En el estado de Puebla, un grupo de bacterias de importancia agrícola han sido aisladas y caracterizadas como *Azospirillum brasiliense* (Figura 4.1) asociadas al rizoplano y raíz estéril de plantas de cebada de la región de Xonacatlán, municipio de Cuyoaco. Se utilizaron como inoculante para el cultivo de cebada (Rechi-Roqueñi 1992).

López-Reyes (1996) al realizar un estudio de diversidad genética de bacterias de los géneros *Azospirillum* sp. y *Klebsiella* sp. asociadas a la raíz

Figura 4.1 Bacteria fijadora de nitrógeno del género *Azospirillum* (Foto: Moisés Carcaño Montiel).
e interior de tallos de caña de azúcar de la región cañera de Atencingo, Puebla, encontró Azospirillum sp. a partir de plantas de Polygonum interruptus, Distichlis spicata y Juncus arcticus de suelos salinos del municipio de San José Chiapa, que presentaron fijación de nitrógeno, actividad pectinolítica y producción de sideróforos.

Orosio-Tepeyahuitl (1998) y Carcano-Montiel et al. (2006) aislaron bacterias del género Azospirillum sp. y Klebsiella sp. asociadas a la rizosfera, rizoplano tallo y semilla de plantas de teocintle de la región de San Juan Atenco, encontrando que las semillas pueden funcionar como un sistema de dispersión de microorganismos. Salas-Morales (2000), en un estudio de bacterias solubilizadoras de fosfatos asociadas a plantas de maíz en diferentes regiones edafoclimáticas del estado, identificó a Burkholderia cepacia, Enterobacter cloacae, Acinetobacter calcoaceticus, Burkholderia gladioli, Pseudomonas sp., Chromobacterium violaceum (Figura 4.2) y Aeromonas punctata como bacterias solubilizadoras de diferentes fuentes de fosfatos con potencial biotecnológico.

Vargas-Cante (2001) al realizar estudios de diversidad genética, aisló bacterias del género Azospirillum sp. asociado al sistema suelo-planta de maíz híbrido cultivado en la región de San Juan Atenco. En otro trabajo realizado por Lozano-Flores (2004) se aislaron bacterias del género Azospirillum sp. a partir de maíces procedentes de Ixtacamaxtitlán, Tehuacán, Tepacca, Atlíxco y San Martín Texmelucan. Las bacterias aisladas mostraron actividad antifúngica contra hongos colonizadores de semillas de maíz.

Tapia-López (2005) observó la influencia que tiene la Azospirillum sp. en el mantenimiento sustentable del agroecosistema de teocintle (Zea mays L. sp. mexicana): las plantas de teocintle se encontraron libres de hongos fitopatógenos donde se aplicó la bacteria.

Otra bacteria de importancia en la agricultura es la Gluconacetobacter diazotrophicus (antes nombrada como Acetobacter diazotrophicus) es una acetobacteria fijadora de nitrógeno que desde hace más de diez años fue aislada a partir de caña de azúcar cultivada en el estado de Puebla (Fuentes-Ramírez et al. 1993). Posiblemente a causa de altas dosis de fertilización nitrogenada, esta bacteria asociada a caña de azúcar y de cafetales en Puebla muestra una escasa diversidad genética (Cáballero Mellado y Martínez-Romero, 1994; Cáballero Mellado et al. 1995; Jiménez-Salgado et al. 1997). Se ha observado que a medida que se incrementa la cantidad de nitrógeno disponible disminuye la cantidad de células de G. diazotrophicus en los cultivos de caña (Fuentes-Ramírez et al. 1999). Por otra parte, en rizosfera de maíz y de teocintle de Puebla se ha detectado la especie fijadora de nitrógeno Burkholderia tropica (β-Proteo-

Figura 4.2 Bacteria solubilizadora de fósforo del género Chromobacterium (Foto: Moisés Carcano Montiel).
bacteria) (Reis et al. 2004). Dentro de la división γ-Proteobacteria y colonizando subproductos de maíz, se ha encontrado Klebsiella sp., con la característica de participar en la biodegradación de ciertos pigmentos usados por diversas industrias. Por otro lado, se ha reportado por primera vez en el país la presencia de la especie Pantoea ananatis, aislado de plantas de maíz en el estado de Puebla, como un microorganismo patógeno que provoca la enfermedad de la mancha de la hoja (Pérez-y-Terrón et al, 2009).

Bacterias de importancia médica

Respecto a las bacterias de interés médico, se han estudiado las siguientes: Enterobacter cloacae, Klebsiella pneumoniae, Micrococcus, Pseudomonas aeruginosa, Pseudomonas fluorescens, Staphylococcus epidermidis, consideradas como patógenos de superficies vivas e inertes de quirófano y en unidades de cuidados intensivos de hospitales generales en Cholula y la ciudad de Puebla (Salazar-Hernández 2006).

También se ha encontrado Acinetobacter sp., Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Pseudomonas fluorescens, Staphylococcus aureus y Staphylococcus epidermidis en hemocultivos centrales y periféricos de los servicios de pediatría del Hospital Universitario de Puebla (Díaz-Muñoz, 2007). Diferentes especies de Salmonella (Montes de Oca, 1975; Rodríguez-Ambriz 1990) Staphylococcus (Hernández-López 1984), Clostridium perfringens (Torres-Tejeda 1991), Listeria monocytogenes (Hernández-Farfan y García-Escalante 1997) han sido encontradas en aguas superficiales, muestras clínicas y humanas, así como de productos cárnicos y quesos frescos no pasteurizados de la ciudad de Puebla.

Conclusión

Diversos grupos del Centro de Investigaciones en Ciencias Microbiológicas (CICM) y la Facultad de Ciencias Químicas y Escuela de Biología de la Benemérita Universidad Autónoma de Puebla, están estudiando distintos grupos de procariotes, entre los que se incluyen bacterias de interés clínico como las siguientes: *Pseudomonas*, *Haemophilus*, *Mycoplasma*, *Brucella*, biovaras patógenos de *Escherichia coli* y *Yersinia pseudotuberculosis*. Por su interés biotecnológico en el CICM se estudia a *Bacillus thuringiensis* y *Azotobacter vinelandii*, así como a bacterias asociadas a plantas y procariontes de ambientes extremos, por ejemplo, especies de las familias Acetobacteraceae, Enterobacteriaceae, Methylobacteriaceae, especies de los grupos de Rhizobia, así como distintas actinobacterias. Dentro del área de fitoremediación de suelos contaminados con hidrocarburos se estudia a *Serratia* y *Azospirillum*, además de *Pseudomonas* y *Stenotrophomonas* para control biológico de enfermedades en plantas. En el CICM se están desarrollando estudios directamente encaminados al estudio de diversidad bacteriana utilizando el enfoque no cultivable, lo que permitirá el conocimiento de especies y grupos bacterianos difíciles de cultivar y por lo mismo no contemplados en estudios previos. Por ello, se espera que en un futuro próximo estos trabajos se publiquen en revisiones arbitradas, ampliando la diversidad conocida de procariontes.

Actualmente, se reportan en el mundo 4 800 géneros bacterianos y se estima que hay de uno a tres millones. Sarukhan et al. (2009) reportan 265 géneros y seis subespecies o variedades. En Puebla se han reportado 21 géneros bacterianos con 22 especies, tanto de importancia agrícola como médica.

DIVERSIDAD DE HONGOS

Rosario Medel Ortiz, Alejandra Espinosa Texis, Patricia Sánchez Alonso, Omar Romero Arenas y Lucía López Reyes

Introducción

Los hongos son un grupo heterogéneo de organismos que poseen núcleo, pared celular, se nutren por absorción y pueden estar formados por una sola célula o varias. Su reproducción puede ser sexual y asexual y están representados por levaduras, mohos y hongos verdaderos como normalmente los conocemos; también pueden observarse a simple vista o con ayuda del microscopio, no son capaces de fotosintetizar por
lo que se nutren por absorción; necesitan de sustratos para crecer. Debido a que se dispersan a través de esporas, las que generalmente son acarreadas por el viento, los hongos pueden colonizar casi cualquier sustrato y habitar en cualquier ecosistema, son capaces de vivir libremente o en forma parásita creciendo dentro o sobre otros organismos (Hernández 2008). Son el grupo de organismos más numeroso después de los insectos y por poseer quitina en su pared celular, están más relacionados con los animales que con las plantas. Su impacto en el medio ambiente es muy importante (Hawksworth 1991), ya que son los degradadores de materia orgánica por excelencia junto con las bacterias del suelo. Se calcula que existen alrededor de 70 000 especies de hongos en el mundo, de las que se estima 12 000 se encuentran en México (Sarukhán et al. 2009); en contraste con esta cifra, Guzmán (1998) estimó una diversidad de 200 000 especies fungícas para el país. En la actualidad se han citado aproximadamente 7 000 especies de hongos en la República Mexicana (Sarukhán et al. 2009), de las cuales se refirieron 97 especies estudiadas para el estado de Puebla, aunque el número podría variar ya que seguramente se ha estudiado otras especies en diferentes ambientes. En el grupo descrito en este capítulo, se aborda a los hongos estudiados en el estado de Puebla desde diferentes puntos de vista, incluyendo su diversidad, los usos, la importancia industrial, los de efecto alucinógeno y de interés médico así como los que se usan como comestibles y los parásitos de plantas y animales incluyendo al hombre.

Diversidad de hongos. Chichilnanacat y hongos relacionados. Los Ascomicetes

Los hongos ascomicetes se llaman así porque sus esporas (estructuras reproductivas) se producen en “saquitos” llamados ascas. Es un grupo diverso e importante que habita cualquier tipo de vegetación y coloniza casi cualquier sustrato, así que hay ascomicetes saprobios (crecen sobre sustratos), parásitos (que viven de otro organismo) o simbiontes (asociados a otros para beneficio mutuo). En este grupo existen especies de importancia forestal, fitopatológica, industrial y comestibles, por citar algunos usos.

Las primeras citas de ascomicetes para Puebla corresponde a Herrera y Guzmán (1961) y Welden y Lemke (1961), pero fue el trabajo de Martínez-Alfaro et al. (1983) uno de los más completos realizados en la entidad pues citó 158 especies de hongos de los cuales 18 eran ascomicetes. Otros trabajos que han mencionado especies pueden ser consultados al final del Cuadro 4.2, donde se presenta la lista de especies citadas, ficha bibliográfica y sustrato donde crecen. En total son 38 especies que pertenecen a ocho órdenes que

<table>
<thead>
<tr>
<th>Especies</th>
<th>Cita</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaporthales*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaportha macrospora Wehrneyer</td>
<td>Welden y Lemke 1961</td>
<td>L</td>
</tr>
<tr>
<td>Eurotiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaphomyces munitatus Fr.</td>
<td>Trappe et al. 1979</td>
<td>H</td>
</tr>
<tr>
<td>Helotiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geoglossum atropurpureum (Batsch.) Pers. =Microglossum atropurpureum (Batsch.)</td>
<td>Medel y Calonge 2004</td>
<td>T</td>
</tr>
<tr>
<td>P. Karst. Leotia lubrica (Scop.) Pers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leotia lubrica (Scop.) Pers.</td>
<td>Chacón y Guzmán 1983</td>
<td>H</td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 4.2

<table>
<thead>
<tr>
<th>Especies</th>
<th>Cita</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocreales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordyceps capitata (Holm.) Link</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypomyces lactifluorum (Schwein.) Tul. & C. Tul.</td>
<td>Martinez-Alfaro et al. 1983</td>
<td>Fun, Com</td>
</tr>
<tr>
<td>H. macrosporus Seaver</td>
<td></td>
<td>Fun</td>
</tr>
<tr>
<td>Pezizales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cookeina tricholoma (Mont.) Kuntze</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Helvella crispa (Scop.) Fr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. lacunosa Afzel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. villosa (Hedw. ex Kuntze) Diss. & Nannf.</td>
<td>Medel y Calonge 2004</td>
<td>H</td>
</tr>
<tr>
<td>Otidea onotica (Pers.) Fuckel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phillipsia gigantea Seaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizina undulata Fr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcoscypha coccinea (Jacq.) Sacc.</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Sarcosphaera coronaria (Jacq.) J. Schrötl.</td>
<td>Herrera y Guzmán 1961</td>
<td>H</td>
</tr>
<tr>
<td>Urnula craterium (Schwein.) Fr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleosporales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sporormiella teretispora S.I. Ahmed & Cain ex J.C. Krug</td>
<td>Ahmed y Cain 1972</td>
<td>Fi</td>
</tr>
<tr>
<td>Sordariales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schizothecium miniglutinans (Mirza & Cain) N. Lundq. =Podospora miniglutinans Mirza & Cain</td>
<td>Mirza y Cain 1969</td>
<td>Fi</td>
</tr>
<tr>
<td>Podospora pistillata Mirza & Cain</td>
<td></td>
<td>Fi</td>
</tr>
</tbody>
</table>

Incluyen 26 géneros, esta cifra de acuerdo a los dos últimos inventarios de ascomicetes en México (Medel et al. 1999 y Medel 2007). La mayoría de las especies citadas crecían sobre madera (20), humus (10), sobre hongos o excremento de diversos animales (seis), sobre suelo o insectos (una especie cada uno). Cuatro especies son comestibles, la más popular, Hypomyces lactifluorum (ascomicete parásito de otros hongos), y se conoce con el nombre de Chichilinanacat en el mercado de Zacapoaxtlá (Figura 4.3).

Existe desconocimiento de la diversidad de estos hongos en el Estado (Figura 4.4 y 4.5), pues debido a la fisiografía y a los tipos de vegetación presentes, es probable que existan en gran número. Atención especial merece la zona de Tehuacán-Cuicatlán, donde abunda el matorral xerófilo, vegetación poco
o nada explorada en el país respecto a los hongos. De las especies conocidas ninguna se encuentra adscrita a la NOM-059-SEMARNAT-2001, no se tienen datos sobre conservación y muy pocos sobre su uso. Tampoco existen datos sobre el papel que hombres y mujeres desarrollan en la conservación de estos hongos o su uso, de tal manera que es urgente incrementar el número de especies conocidas mediante inventarios regionales ya que la pérdida inminente de los bosques especialmente el mesófilo de montaña para cambiarlo por tierras de cultivo, pone en peligro las especies de hongos y otros organismos, dificultando su monitoreo.

Figura 4.3 El *Chichilnaxcat* (*Hypomyces lactifluorum*) es una especie muy apreciada en Puebla y otros estados, y se vende en el mercado de Zacapoaxtla (Foto: A. López).

<table>
<thead>
<tr>
<th>Especies</th>
<th>Cita</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daldinia concentrica (Bolton) Ces. & De Not.</td>
<td>Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
<tr>
<td>D. vernicosasa (Schwein.) Ces. & De Not.</td>
<td>Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
<tr>
<td>Endoxylina tehuacanensis Chacón</td>
<td>Chacón 2002</td>
<td>L</td>
</tr>
<tr>
<td>Hypoxylon nummularium var. australic (Cooke) J.H. Mill.</td>
<td>Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
<tr>
<td>H. rubiginosum (Pers.) Fr.</td>
<td>Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
<tr>
<td>Annulohypoxylon thouarsianum (Lév.) Y.M. Ju, J.D. Rogers & H.M. Hsieh = Hypoxylon thouarsianum (Lév.) Lloyd</td>
<td>Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
<tr>
<td>Phylacia globosa Lév.</td>
<td>Pérez-Silva 1972</td>
<td>L</td>
</tr>
<tr>
<td>P. pociuliformis (Mont.) Mont.</td>
<td>Pérez-Silva 1972</td>
<td>L</td>
</tr>
<tr>
<td>P. turbinata (Berk.) Dennis</td>
<td>Pérez-Silva 1972</td>
<td>L</td>
</tr>
<tr>
<td>Poroleprieuria rogersi M.C. González, Hanlin, Ulloa & Elv. Aguirre</td>
<td>Gonzalez et al. 2004</td>
<td>L</td>
</tr>
<tr>
<td>Poronia oedipus (Mont.) Mont.</td>
<td>Pérez-Silva 1970</td>
<td>L</td>
</tr>
<tr>
<td>Xylaria cubensis (Mont.) Fr.</td>
<td>Pérez-Silva 1970, Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
<tr>
<td>X. grammica (Mont.) Mont.</td>
<td>Pérez-Silva 1975</td>
<td>L</td>
</tr>
<tr>
<td>X. hypoxylon (L.) Grev.</td>
<td>Pérez-Silva 1975</td>
<td>L</td>
</tr>
<tr>
<td>X. multiplex (Kunze) Fr.</td>
<td>Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
<tr>
<td>X. pallida Berk. & Cooke</td>
<td>Martínez-Alfaro et al. 1983</td>
<td>L</td>
</tr>
</tbody>
</table>

* Clasificación taxonómica de acuerdo al *Index Fungorum* (http://www.indexfungorum.org).

Leyendas: S = Sustratos. Com = comestible; E = entomopatógeno; Fim = fimicola; Fung = fungícola; H = humícola; L = lignícola; T = terrícola.
Importancia y usos de los hongos en Puebla

Importancia alimenticia (hongos comestibles en el estado de Puebla).

La distribución geográfica de los hongos comestibles comprende todo el ámbito nacional, disponiendo de información documentada en 28 entidades federativas, siendo Puebla, el Estado de México, Veracruz, Michoacán y Oaxaca parte importante de estas entidades (Villarreal, 1995). La producción de hongos comestibles representa una alternativa accesible para incrementar la producción de alimentos con alto valor proteico; más del 40% de los Municipios del Estado de Puebla producen hongos comestibles como Agaricus bisporus (champiñon), Pleurotus ostreatus (seta) y Lentinula edodes (shitake). Sin embargo, la mayoría de los productores utilizan cepas de origen exótico y solo algunos aprovechan el potencial nativo de cepas silvestres de sus localidades. En este sentido, el Colegio de Postgraduados (COLPOS), Campus Puebla, ha iniciado el establecimiento de un Centro de Recursos Genéticos de Hongos Comestibles (CREGENHC) a partir del 2004, con los objetivos de mantener y conservar el germoplasma nativo procedente de diversas regiones del país donde se incluye a Puebla (Cuadro 4.3), caracterizar el germoplasma nativo a nivel molecular, principalmente el correspondiente al champiñón (Agaricus), las setas (Pleurotus) y Shi-take (Lentinula), generando bases de datos asociadas a la procedencia y a la producción de hongos y el establecimiento de un programa de mejora genética para desarrollar una nueva generación de cepas nativas comerciales de hongos comestibles en Puebla y otras regiones del país, a fin de fortalecer la producción rural y comercial de hongos comestibles (Sobal et al. 2007).

El número exacto de especies nativas de hongos comestibles en el estado de Puebla se desconoce; existen trabajos que citan 38 especies provenientes de San Salvador El Verde y San Martín Texmelucan, así como los nombres comunes conocidos por los pobladores de la localidad como “orejas”, “San Juanero”, “pancita”, “azules” (Pellicer-González et al. 2002, Pérez-Moreno et al. 2008); algunas de estas especies se han vuelto raras en lugares como San Andrés Calpan (Blanca Guerrero com. pers.), debido a la recolección masiva. A la fecha no existe un catálogo que mencione la totalidad de especies que existen en el estado de Puebla ni su uso.

Otra especie que se colecta frecuentemente es el huitalcoche (Ustilago maydis), conocido por las agallas grises que provoca en el elote y algunas veces en hoja, tallo y flor. Aunque la especie es patógena de maíz a nivel mundial, en México se recolecta para consumo humano. Es un hongo que se puede aislar prácticamente de todos los municipios del estado de...

Cuadro 4.3 Cepas nativas de hongos comestibles del estado de Puebla que se conservan en el Centro de Recursos Genéticos de Hongos Comestibles (CREGENHC) del Colegio de Postgraduados, Campus Puebla. Fuente: Sobal et al. 2007.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Estado</th>
<th>Cantidad</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus abruptibulbus Peck</td>
<td>Puebla</td>
<td>3</td>
<td>CP-87, CP-138, CP-139</td>
</tr>
<tr>
<td>A. bisporus var. bisporus (J.E. Lange) Pilát</td>
<td>Puebla</td>
<td>1</td>
<td>CP-124</td>
</tr>
<tr>
<td>A. bitorquis (Quél.) Sac.</td>
<td>Puebla</td>
<td>7</td>
<td>CP-84, CP-85, CP-127, CP-128, CP-129, CP-130, CP-131</td>
</tr>
<tr>
<td>A. campestris var. campestris L.</td>
<td>Puebla</td>
<td>1</td>
<td>CP-54</td>
</tr>
<tr>
<td>A. hortensis (Cooke) Pilát</td>
<td>Puebla</td>
<td>1</td>
<td>CP-74</td>
</tr>
<tr>
<td>A. osecanus Pilát</td>
<td>Puebla</td>
<td>2</td>
<td>CP-83, CP-125</td>
</tr>
<tr>
<td>A. subrufescens Peck</td>
<td>Puebla</td>
<td>1</td>
<td>CP-123</td>
</tr>
<tr>
<td>Calvatia spp.</td>
<td>Puebla</td>
<td>4</td>
<td>CP-35, CP-104, CP-112, CP-114</td>
</tr>
<tr>
<td>Coprinopsis spp.</td>
<td>Puebla</td>
<td>1</td>
<td>CP-250</td>
</tr>
<tr>
<td>Ganoderma spp.</td>
<td>Puebla</td>
<td>1</td>
<td>CP-205</td>
</tr>
<tr>
<td>P. levis (Berk. & M.A. Curtis) Singer</td>
<td>Puebla</td>
<td>1</td>
<td>CP-30</td>
</tr>
<tr>
<td>Pleurotus spp.</td>
<td>Puebla</td>
<td>1</td>
<td>CP-166</td>
</tr>
<tr>
<td>Stropharia spp.</td>
<td>Puebla</td>
<td>1</td>
<td>CP-107</td>
</tr>
<tr>
<td>Volvariella spp.</td>
<td>Puebla</td>
<td>1</td>
<td>CP-229</td>
</tr>
</tbody>
</table>

Puebla, aunque se ha reportado formalmente en los municipios de Acajete, Calpan y San Martín Texmelucan, entre otros (Fuentes-Hernández 2004).

Los hongos comestibles de los géneros Agaricus, Armillaria, Auricularia, Calvatia, Coprinopsis, Ganoderma, Laetiporus, Lentinula, Neolentinus, Pleurotus, Stropharia y Volvariella se localizan en diversas regiones del estado (Cuadro 4.3). En el género Agaricus se han identificado tentativamente ocho especies, así como el género Pleurotus. El cultivo de champiñón (Agaricus bisporus) se encuentra distribuido en 41 municipios del estado; el del hongo seta (Pleurotus ostreatus) se encuentra con una cobertura mayor, ocupando 90 municipios del estado, y el cultivo de shiitake (Lentinula edodes) en dos municipios, como se muestra en la figura 4.6 (SDR 2007).

De las especies de hongos macroscópicos utilizados en la medicina tradicional se han identificado en el estado de Puebla las siguientes: colador del brujo (Clathrus crispus), señorita o cítocibe embudado (Clitocybe gibba), pechuga de aile o kawaratake (Coriolus versicolor), velo de novia (Dictyophora indusiata) y estrella de tierra (Geastrum sacatum) que se usan en diferentes padecimientos como conjuntivitis, gras, verrugas y cáncer entre otros padecimientos, como se reportan en el Cuadro 4.4.

Importancia fitopatógena

Dansel grupo de los hongos se encuentran los que se consideran fitopatógenos, que se caracterizan por causar enfermedades a las plantas; se trata principalmente de los Ascomicetos (definidos
<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Hábitat natural</th>
<th>Valor medicinal</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colador de brujo</td>
<td>Clathrus crispus</td>
<td>En los bosques de las Sierras de Puebla, Tlaxcala, y Veracruz</td>
<td>En la medicina tradicional mexicana aún se usa contra la conjuntivitis</td>
<td>Villarreal 1995, Guzmán 1998</td>
</tr>
<tr>
<td>Señorita o clitocibe embudado</td>
<td>Clitocybe gibba</td>
<td>En los bosques de las Sierras de Puebla, Tlaxcala, Oaxaca, Chiapas, Guanajuato, y Querétaro. En el Nevado de Colima</td>
<td>En la medicina tradicional mexicana aún se usa como febrífugo, antibacterial y antifúngica</td>
<td>Villarreal 1995, Guzmán 1998, Steffen 2002</td>
</tr>
<tr>
<td>Velo de novia</td>
<td>Dictyophora indusiata</td>
<td>En las Sierras de Puebla, Tlaxcala, Oaxaca y Chiapas. Veracruz, Tabasco, Zacatecas y Jalisco. (Zonas en la que también se ha localizado Amanita muscaria, y otras especies de los psilocíbidos)</td>
<td>Entre los antiguos mexicanos se usaba en ceremoniales.</td>
<td>Villarreal 1995</td>
</tr>
<tr>
<td>Estrella de tierra</td>
<td>Geastrum saccatum</td>
<td>En los bosques de las Sierras de Puebla, Tlaxcala, Oaxaca y Chiapas. En Guanajuato, y Querétaro, en bosques de encino. También se le ha localizado en Colombia y en Chabó, Chile.</td>
<td>En la medicina tradicional mexicana aún se usa contra el asma, para cicatrizar el ombligo de los niños y contra el mal de ojo.</td>
<td>Seymour 1985</td>
</tr>
</tbody>
</table>
anteriormente) y Basidiomicetos (hongos en forma de sombrilla y setas). Entre las enfermedades que causan están las royas, las cenicillas o enmohecimiento polvoso, marchitez vascular y carbones, que causan un impacto severo en la economía de los agricultores y a veces en la población en general (Tapia-López 2005).

Los hongos patógenos aislados a la fecha en Puebla pertenecen a 22 especies, 19 de ellas son Ascomycetes, dos especies de Oomycetes, así como dos de clasificación aún no definida (Cuadro 4.5). Los datos que existen en Puebla sobre la diversidad de especies de hongos que pueden afectar a las plantas como árboles frutales, cafetos, hortalizas, son aún escasos. Tampoco existen catálogos que indiquen la prevalencia en el estado de las distintas especies de hongos fitopatógenos en los cultivos frutícolas, hortícolas y cereales, ni de la importancia de la flora del lugar como reservorio de enfermedades fúngicas.

Figura 4.7 Colonia de hongo fitopatógeno del género *Fusarium* aislado de planta de maíz (Foto: Lucía López Reyes).

Figura 4.8 Observación microscópica de hongo fitopatógeno del género *Alternaria* aislado de planta de maíz (Foto: Lucía López Reyes).

<table>
<thead>
<tr>
<th>Fitopatógeno</th>
<th>Hospedero</th>
<th>Región</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acremonium spp. (Ascomycota)</td>
<td>Tallo y semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia López 2005</td>
</tr>
<tr>
<td>Alternaria spp. * (Ascomycota)</td>
<td>Hojas y semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia López 2005</td>
</tr>
<tr>
<td>Bipolaris spp. (Ascomycota)</td>
<td>Hojas y semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia López 2005</td>
</tr>
</tbody>
</table>
Continúa cuadro 4.5

<table>
<thead>
<tr>
<th>Fitopatógeno</th>
<th>Hospedero</th>
<th>Región</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastomyces spp. (Ascomycota)</td>
<td>Lirio acuático (Eichornia sp.)</td>
<td>Estatal</td>
<td>Martínez-Jiménez y Charudattan 1998</td>
</tr>
<tr>
<td>Colletotrichum lindemuthianum</td>
<td>Frijol (Phaseolus vulgaris)</td>
<td>Estatal</td>
<td>González-Chavira y Rodríguez-Guerra 2004</td>
</tr>
<tr>
<td>Curvularia spp. (Ascomycota)</td>
<td>Semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López 2005</td>
</tr>
<tr>
<td>Fusarium graminearum (Ascomycota)</td>
<td>Trigo (Triticum aestivum L.)</td>
<td>Cuyoaco</td>
<td>Leyva-Mir et al. 2003</td>
</tr>
<tr>
<td>Fusarium oxysporum (Ascomycota)</td>
<td>Chile (Capsicum spp.)</td>
<td>Tlacotepec de José Manzo, San Martín Texmelucan</td>
<td>González-Pérez et al. 2004</td>
</tr>
<tr>
<td></td>
<td>Hojas y semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López 2005</td>
</tr>
<tr>
<td></td>
<td>Sábila (Aloe vera)</td>
<td>Chietla, Izúcar de Matamoros</td>
<td></td>
</tr>
<tr>
<td>Gloecadium spp. (Ascomycota)</td>
<td>Semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López 2005</td>
</tr>
<tr>
<td>Helminthosporium spp. (Ascomycota)</td>
<td>Tallo y semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López 2005</td>
</tr>
<tr>
<td>Monilia spp. (Ascomycota)</td>
<td>Lirio acuático (Eichornia sp.)</td>
<td>Estatal</td>
<td>Martínez-Jiménez y Charudattan 1998</td>
</tr>
<tr>
<td>Pestalotiopsis spp. (Ascomycota)</td>
<td>Hojas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López 2005</td>
</tr>
<tr>
<td>Phytophthora capsici Leonian (Oomycota)</td>
<td>Chile (Capsicum sp.)</td>
<td>Tlacotepec de José Manzo, San Martín Texmelucan, Puebla. Valsequillo</td>
<td>González-Pérez et al. 2004 Espinoza-López y Mendoza-Zamora 2001</td>
</tr>
<tr>
<td>Puccinia graminis (Basidiomycota)</td>
<td>Avena (Avena sativa)</td>
<td>Cuyoaco, Mazapiltepec</td>
<td>Torres-Pacheco et al. 2007</td>
</tr>
<tr>
<td>Pythium spp. Nees. (Oomycota)</td>
<td>Chile (Capsicum sp.)</td>
<td>Tlacotepec de José Manzo, San Martín Texmelucan</td>
<td>González-Pérez et al. 2004</td>
</tr>
<tr>
<td>Rhizoctonia solani Kühn. (Basidiomycota)</td>
<td>Chile (Capsicum sp.)</td>
<td>Tlacotepec de José Manzo, San Martín Texmelucan</td>
<td>González-Pérez et al. 2004</td>
</tr>
<tr>
<td>Rhizopus spp. (incertae sedis)</td>
<td>Hojas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López 2005</td>
</tr>
<tr>
<td>Sclerotium rolfsii Sacc (Ascomycota)</td>
<td>Chile (Capsicum sp.)</td>
<td>Tlacotepec de José Manzo, San Martín Texmelucan</td>
<td>González-Pérez et al. 2004</td>
</tr>
<tr>
<td>Torula spp.</td>
<td>Semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López 2005</td>
</tr>
<tr>
<td>Trichoderma spp. (Ascomycota)</td>
<td>Semillas de teocintle</td>
<td>San Juan Atenco</td>
<td>Tapia-López et al. 2006</td>
</tr>
<tr>
<td>Ustilago maydis (Basidiomycota)</td>
<td>Maíz (Zea mays)</td>
<td>Diversas regiones</td>
<td>Fuentes-Huerta 2005</td>
</tr>
<tr>
<td></td>
<td>Planta de maíz</td>
<td>San Juan Atenco</td>
<td>Tapia-López et al. 2006</td>
</tr>
<tr>
<td></td>
<td>Semillas de teocintle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Importancia médica

En el suelo, la flora y la fauna del estado de Puebla habitan hongos que tienen la capacidad de ocasionar enfermedades en el humano y en los animales, llamadas micosis, que dependiendo de la región corporal afectada y del daño que pueden causar en el organismo se clasifican en superficiales (Cuadro 4.6), subcutáneas (Cuadro 4.7), sistémicas y oportunistas (Cuadro 4.8) (Espinosa 2000).

La diversidad fúngica que ocasionan estas micosis se incluye principalmente en los Ascomicetes, sin embargo las formas infectantes que ingresan y parasitan

<table>
<thead>
<tr>
<th>Micosis</th>
<th>Agente etiológico</th>
<th>Localización geográfica</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiña</td>
<td>Trichophyton rubrum</td>
<td>Todo el estado</td>
<td>Macotela 2000, Méndez-Tovar et al. 2003</td>
</tr>
<tr>
<td>Tiña</td>
<td>T. mentagrophytes</td>
<td>Todo el estado</td>
<td>Macotela 2000</td>
</tr>
<tr>
<td>Tiña</td>
<td>T. tonsurans</td>
<td>Todo el estado</td>
<td>Macotela 2000</td>
</tr>
<tr>
<td>Tiña</td>
<td>T. concentricum</td>
<td>Centro y norte de Puebla</td>
<td>Méndez-Tovar et al. 2003</td>
</tr>
<tr>
<td>Tiña</td>
<td>Epidermophyton floccosum</td>
<td>Todo el estado</td>
<td>Macotela 2000</td>
</tr>
<tr>
<td>Tiña</td>
<td>Microsporum canis</td>
<td>Todo el estado</td>
<td>Macotela 2000</td>
</tr>
<tr>
<td>Tiña</td>
<td>M. gypseum</td>
<td>Todo el estado</td>
<td>Macotela 2000</td>
</tr>
<tr>
<td>Pityrias versicolor</td>
<td>Malassezia furfur</td>
<td>Todo el estado</td>
<td>Macotela 2000, Méndez-Tovar et al. 2003</td>
</tr>
<tr>
<td>Tiña negra</td>
<td>Phaeoannellomyces we neckii</td>
<td>Todo el estado</td>
<td>Macotela 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micosis</th>
<th>Agente etiológico</th>
<th>Distribución geográfica</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cromoblastomicosis</td>
<td>Cladosporium carrionii</td>
<td>Todo el estado</td>
<td>Macotela 2000, Méndez 2000</td>
</tr>
<tr>
<td>Cromoblastomicosis</td>
<td>Fuscaea pedrosi</td>
<td>Todo el estado</td>
<td>Macotela 2000, Méndez 2000</td>
</tr>
<tr>
<td>Cromoblastomicosis</td>
<td>Phialophora verrucosa</td>
<td>Todo el estado</td>
<td>Méndez 2000</td>
</tr>
<tr>
<td>Eumicetoma</td>
<td>Madurella grisea</td>
<td>Todo el estado</td>
<td>Méndez 2000</td>
</tr>
<tr>
<td>Eumicetoma</td>
<td>Madurella mycetomatis</td>
<td>Todo el estado</td>
<td>Méndez 2000</td>
</tr>
<tr>
<td>Eumicetoma</td>
<td>Acremonium spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Eumicetoma</td>
<td>Exophila jeansel mei</td>
<td>Todo el estado</td>
<td>Méndez 2000</td>
</tr>
<tr>
<td>Eumicetoma</td>
<td>Fusarium spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Eumicetoma</td>
<td>Aspergillus spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
</tbody>
</table>
Cuadro 4.8 Principales agentes etiológicos de las micosis sistémicas y oportunistas que afectan al humano en el estado de Puebla.

<table>
<thead>
<tr>
<th>Micosis</th>
<th>Agente etiológico</th>
<th>Distribución geográfica</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histoplasmosis</td>
<td>Histoplasma capsulatum</td>
<td>Todo el estado</td>
<td>Ramírez y Vite 1993</td>
</tr>
<tr>
<td>Paracoccidiodomicosis</td>
<td>Paracoccidioides brasilienis</td>
<td>Límites con el estado de Veracruz</td>
<td>Ramírez y Vite 1993</td>
</tr>
<tr>
<td>Candidosis</td>
<td>Candida spp.</td>
<td>Todo el estado</td>
<td>Macotela 2000, Méndez-Tovar et al. 2003</td>
</tr>
<tr>
<td>Mucormicosis</td>
<td>Mucor spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Mucormicosis</td>
<td>Absidia spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Mucormicosis</td>
<td>Rhizopus spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Peniciliosis</td>
<td>Penicillium spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Geotricosis</td>
<td>Geotrichum sp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Tiña</td>
<td>Cephalosporium spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Tiña</td>
<td>Alternaria spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Tiña</td>
<td>Scopulariopsis spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Tiña</td>
<td>Fusarium spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Tiña</td>
<td>Rhodotorula spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Hemorragia pulmonar aguda idiopática, mictoxicosis</td>
<td>Stachybotrys chartarum</td>
<td>Todo el estado</td>
<td>Sánchez et al. 2004</td>
</tr>
<tr>
<td>Tiña</td>
<td>Helmintosporium spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
<tr>
<td>Aspergilosis</td>
<td>Aspergillus spp.</td>
<td>Todo el estado</td>
<td>Cárdenas 1992</td>
</tr>
</tbody>
</table>

al organismo son de tipo asexual. Los primeros casos de micosis humanas en Puebla fueron publicados por Velasco y González (1976) así como Lavalle (1975). Posteriormente, el trabajo realizado por Macotela en el 2000, en Santiago Yancutlalpan, indica que las micosis superficiales son las más frecuentes en el ser humano, seguidas por las oportunistas y las subcutáneas. Se conoce que las tiñas son las más frecuentes en la Sierra Norte de Puebla (Méndez et al. 2003). Por otro lado, casos clínicos de esporotricosis (Figura 4.10) indican que es la micosis subcutánea más frecuente en las personas, realizando además los primeros aislamientos de *Sporothrix schenckii* (Figura 4.9 y Figura 4.11) en suelo y plantas de la Sierra Norte de Puebla (Espinosa 1990). Posteriormente, se documentan varios aislamientos a partir de suelo y plantas de

Figura 4.9 Morfología macroscópica de *Sporothrix schenckii* en la fase micelial. (Foto: Alejandra Espinosa Texis).
agentes de cromoblastomicosis: Cladosporium carrionii, Phialophora verrucosa, Fonsecaea pedrosoi, Rhinocladiella aquaspersa, de Actinomycetes causantes de micetoma (Díaz 2008), y un gran número de agentes de micosis oportunistas del medio ambiente (Cárdenas 1992). Así mismo, se han observado zonas endémicas de esporotricosis en la Sierra Norte de Puebla y la tiña imbricada en la zona central y la Sierra Norte.

La información disponible del conocimiento de los hongos es escasa. Existen pocos lugares en Puebla en donde se realice investigación referente a hongos y las publicaciones son pocas, por lo que se requiere incrementar la participación de investigadores especialistas en el tema. Se está trabajando en el Instituto de Ciencias de la BUAP, con el estudio de la variación entre cepas del hongo Ustilago (huitlacoche) y la forma en que se traslada de un lugar a otro y se están empleando técnicas que siguen la huella de su DNA y su carácter como patógeno del maíz (Sánchez-Alonso com. pers.). Asimismo, la búsqueda de hongos que causan enfermedades en los diferentes municipios de Puebla se aborda en estudios que se realizan en el laboratorio de Micología del Instituto de Ciencias de la BUAP, logrando describir un total de 35 especies que ocasionan daño en el hombre. Sin embargo, como estos hongos pueden ocasionar también enfermedades en animales, no debe dudarse que es factible encontrar casos clínicos de micosis superficiales, subcutáneas, sistémicas y oportunistas en ellos.

Finalmente, ninguna de las especies citadas de la entidad está bajo alguna categoría de protección de acuerdo a la NOM-059-SEMARNAT-2001 y a pesar de los esfuerzos hasta ahora realizados, hace falta empezar a sistematizar los estudios en la entidad: inventarios, estudios etnomicológicos, continuar con la preservación de los recursos genéticos, particularmente las cepas nativas de hongos comestibles y ectomicorríces, hongos patógenos de plantas y humanos, el papel que los hombres y las mujeres juegan en la utilización y preservación de este recurso, así como todos aquellos temas relacionados con hongos que nos den una visión real de la diversidad y utilidad de este grupo en el estado.

DIVERSIDAD DE PROTOCTISTAS

Lino Zumaquero Ríos, Ernesto Mangas-Ramírez, Alma Delia Ramírez Guameros y Aidee Montiel-Martínez

Introducción

Los protoctistas son organismos unicelulares nucleados, algunos capaces de producir su propio alimento por medio de fotosíntesis, mediante pigmentos diferentes a la clorofila (Sarukhán et al. 2009). Dentro de ellos, los protozoarios se encuentran inmersos en series problemáticas de carácter sistemático a pesar de ser un grupo monofilético, sin embargo los avances de Patterson (1998) y de Corliss (2000, 2004) los ubican en un nuevo reino. En la actualidad se notifican más de 83 mil especies, incluyendo los granoreticulosos (foraminíferos) y radiolarios con especies fósiles (ADL et al. 2005), de los cuales 1 014 especies se han descrito en México (Sarukhán et al. 2009); en Puebla se reporta...
un sinnúmero de especies. En este estado y según los estudios practicados en ecosistemas acuáticos, como la cuenca del río Apulco, el embalse Manuel Ávila Camacho y otros ecosistemas temporarios, existe una biodiversidad importante de protozoarios que requiere una mayor atención, así como la incidencia de estos organismos como agentes causales de problemas de salud. De los organismos estudiados en Puebla, se incluye la biodiversidad y la importancia de los protozoarios desde el punto de vista ecológico y sus repercusiones en la salud, así como los de utilidad como fitoplancton, incluyendo a las microalgas y las localidades en que se encuentran presentes en términos de reservorios de agua dentro del estado.

Diversidad de protozoarios en Puebla

Los protozoarios se encuentran representados por organismos unicelulares nucleados con presencia de organelos. En Puebla se cuenta con representantes foraminíferos (Granoreticolosa): Foraminifera (Orbigny 1826) fundamentalmente en algunas áreas del suroeste del estado, en las que se ha detectado la presencia de especies del género *Globotruncana* y *Globigerina*, correspondientes al maestriático-campaniano, sin que exista hasta el momento una proyección para su mejor estudio (Buitrón 1985).

El informe técnico del grupo de Invertebrados de la escuela de Biología de la BUAP a CONABIO sobre los estudios de invertebrados de la cuenca del río Apulco muestra una importante diversidad de organismos de vida libre de diferentes filas del llamado reino protozoa (Zumaquero et al. 2001). Entre las filas que se reporta para la cuenca del río Apulco se encuentran abundantes poblaciones de eugléridos, que en zonas de colonia Morelos muestran en sus aguas un aspecto verdoso; éstos son también notificados en zonas de Valsequillo, en lagunas adyacentes temporales del estado de Puebla, donde los cilióforos se han observado y registrado también. El listado anexo incluye a protozoarios que pueden ser considerados como bioindicadores de los niveles sapróbicos de contaminación de las aguas poblanas. En particular y debido a la falta de apoyos, este grupo de protoctistas presenta una indiferencia total para su estudio, a pesar de que la Organization of Food Administration y la Agencia de Energía Atómica de las Naciones Unidas (FAO/AIEA), han sugerido el estudio de la fauna de protozoarios simbiontes en el sistema digestivo de rumiantes con la finalidad de mejorar la producción animal. Puebla muestra una importante fauna de protozoarios como agentes etiológicos de enfermedades de los animales y el hombre: un ejemplo es el *Triplumaria* sp. que ha sido identificado entre los ciliados del rumen obtenido de bovinos en el municipio Atlízco como se observa en el Cuadro 4.9 (Aladro 2006).

Protozoarios de importancia médica

La mayor atención de la fauna de protozoarios en Puebla es recabada por los organismos de importancia médica y fue Izquierdo en 1916 quien notificó la presencia de *Plasmodium vivax*, causante de la malaria en ese año, en zonas del sur y el norte del estado. En los años siguientes serían pocos los trabajos, al menos documentados, que notificarían la presencia de otros protozoarios.

Los estudios más completos sobre protozoarios en Puebla corresponden a las especies de importancia médica: *Entamoeba histolyca* y *Entamoeba dispar*. La primera especie es un parásito del intestino de humanos, cánidos y otros animales; se caracteriza por su forma ameboida en la fase de trofozoito o vegetativa y por la emisión de pseudópodos romos y cortos de 12 a 60 micras; la forma quística es redonda, de entre 10 y 20 micras, tetranucleada con cariosomas céntricos. La segunda especie no se puede diferenciar fácilmente de la primera debido a una concordancia molecular del 95 % y a su morfología casi idéntica (Guerrero 2008). En el estado, los estudios realizados por Ramírez-Guarneros (2005) en población infantil, mostraron prevalencia superior al 70 % en algunas poblaciones urbanas, como Teziutlán y Ciudad Serdán, siendo el promedio de 17.9 % y de 33 % respectivamente. En la década de los noventa Puebla exhibió 14 461 casos de personas infectadas en la forma intestinal, mientras que un menor número eran notificadas por el absceso hepático amebiano
(Ruiz Sánchez 2008). Este rizópodo también fue notificado en Canis lupus (perro vagabundo), en parques infantiles del municipio de Puebla (Cortés y Zumaquero 2005). El hallazgo de amibas de vida libre en líquido ceñaloráquideo de pacientes neuropsiquiátricos en el Hospital Universitario de Puebla fue realizado por De Ica et al. (1991).

Trichomonas vaginalis. Es otra de las especies de importancia médica que afecta al ser humano en particular, con mayor incidencia en mujeres, y es reportada en las tesis de los anales del departamento de agentes biológicos de la escuela de medicina de la BUAP. Velasco-Castrejón (2007) comunica que en 1983 se reportó la existencia de una persona infectada por *Trichomonas foetus* y *Trypanosoma cruzi* (Kinetoplastida: Trypanosomatidae) y posteriormente, en 1987 según se notifica por el Hospital Universitario de Puebla, se dio la existencia de un caso (Velasco-Castrejón 2007). No obstante, Zárate y Zárate (1985) señalan un 1.8 % de seroprevalencia de casos. Tay et al. (2006) informan una positividad a *T. cruzi* en el 57.5 % de 952 triatominos colectados en 84 localidades de 58 municipios del estado de Puebla. Sandoval y Zumaquero (2004) notifican a *T. cruzi* (Kinetoplastida: Trypanosomatidae) en *Triatoma dimidiata* de las zonas de Jonotla en la Sierra Norte del estado y realizan estudios de distribución, notificando la infección de *Trypanosoma* al triatomin y a mamíferos reservorios en varias zonas del estado. Estudios de Sosa Jurado (2004) notifican la existencia indirecta del protozoario parásito a través de la detección de anticuerpos en humanos.

Se detectó *Giardia lamblia* en un estudio practicado a niños escolares menores de 12 años en el municipio de Atlixco, mientras que con anterioridad había sido notificado por el mismo autor en Tlaepahuala Xicotepec.

Cuadro 4.9 Listado de especies de protozoarios en Puebla.

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euglenozoa Cavalier-Smith, 1981</td>
<td>Euglypha Nebela</td>
<td>Euglena acanthophora Nebela collaris</td>
</tr>
<tr>
<td>Kinestoplistida</td>
<td>Trypanosoma</td>
<td>Trypanosoma cruzi (Chagas, 1909)</td>
</tr>
<tr>
<td>Granoreticulocea Saudeler, 1934</td>
<td>Globorotalia Globotruncana</td>
<td>Globorotalia sp. Globotruncana sp. Elphidium sp. L. mexicana</td>
</tr>
<tr>
<td>Diplomonadida</td>
<td>Giardia</td>
<td>Giardia lamblia</td>
</tr>
<tr>
<td>Parabasalia (Honigberg, 1973)</td>
<td>Trichomona</td>
<td>Trichomona vaginalis</td>
</tr>
<tr>
<td>Rhizopoda von Siebold, 1845</td>
<td>Entamoeba</td>
<td>Entamoeba coli Entamoeba histolytica Endolimax nana</td>
</tr>
<tr>
<td></td>
<td>Endolimax Filosa Leidy Acanthoameba (Carpenter) Naegleria</td>
<td>Acanthamoeba sp. Naegleria sp.</td>
</tr>
<tr>
<td>Apicomplexa Levine, 1970</td>
<td>Cyclospora Cryptosporidium Babesia Plasmodium Toxoplasma</td>
<td>Cyclospora catenansis Cryptosporidium parvum Babesia bigemina Plasmodium vivax Toxoplasma gondii</td>
</tr>
<tr>
<td>Ciliofhora Doephl, 1901</td>
<td>Paramecium sp.</td>
<td>Trilumaria sp.</td>
</tr>
</tbody>
</table>

Fuente: Aladro 2006
de Juárez y Palmar de Bravo (Zumaquero Ríos et al 2009). En los estudios realizados en el estado de Puebla (Ramírez-Guarnéros 2005) se encontró en *Giardia lamblia* una prevalencia de 21.7 % en población infantil de regiones urbanas y el 19.7 % en suburbanas, notando que esta parasitosis ha sido subvalorada por las autoridades de salud. Con anterioridad habían sido notificados en los laboratorios de diagnóstico, pero hasta el momento no se ha hallado documentos que notifiquen de manera oficial su presencia.

Otros protozoarios notificados en tesis de licenciatura de las Facultades de Química, Biología y Medicina de la Universidad Autónoma de Puebla son: *Cryptosporidium parvum* Apicomplexa, de los que se conocen casos en seres humanos y serpientes cautivas del herpetario, así como casos esporádicos de *Babesia bigemina* y otras coccidias en bovinos en el municipio de Atlixco.

Diversidad de especies de fitoplancton

Las microalgas de los sistemas acuáticos epicontinentales y oceánicos constituyen el fitoplancton (del griego *phyton* “planta” y *planktos* “vagabundo o errante”). Esta comunidad está compuesta por diversos organismos y bacterias fotosintéticas que pueden ser unicelulares o bien formar colonias o filamentos.

Evolutivamente fue el fitoplancton el responsable de la aparición de una atmósfera rica en oxígeno en nuestro planeta y constituye la base de la cadena trófica en cualquier ambiente acuático: el 95 % de la producción primaria de los océanos se debe al fitoplancton (Wetzel 2001). Desde la época prehispánica ya se tenía conocimiento de la flora de los cuerpos de agua y tuvo gran importancia en la vida cotidiana; los Aztecas recolectaban el cocolín o *teçuiatl* (Cyanophyta, *Phormidium tenue*) extraído del lago de Texcoco debido a que formaba parte de la alimentación diaria de los antiguos mexicanos. Otro uso común que le daban los aztecas era utilizarlo como prenda para pagar tributos. (Ortega 1984). De las diatomeas (Figura 4.12) se utilizan los sedimentos que generan, ricos en sílice, como aislante, secante y pulidor de diversos materiales.

De acuerdo a la síntesis histórica de Ortega (1984), la historia de la Ficología (rama de la biología que estudia a las algas) se da al mismo tiempo que la de la Botánica. En el siglo XIX se dan ya las expediciones a México, surgiendo así los herbarios, investigadores y colectores de importancia. A partir de las múltiples expediciones cuyo fin ha sido conocer la flora, se han creado diversas instituciones para estudios científicos y botánicos, como el Museo Nacional, que tiene una colección de 1 743 ejemplares (Ortega 1975). En Puebla (Cuadro 4.10), los estudios son realmente escasos: se han realizado en San Felipe Xochitépec, en puntos adyacentes a los manantiales de San Pedro y San Lorenzo Tehuacán y en el Oásis, reportando, en conjunto, 55 especies. Estudios recientes realizados por la Universidad Autónoma de Puebla en el Lago de Valsequillo, el río Nexapa y en una laguna del volcán Iztaccíhuatl, evidencian un incremento en el listado, hasta llegar a un total de 171 especies para el estado. Las contribuciones están relacionadas principalmente con el grupo de las diatomeas.

Conclusión

Los datos aportados son producto de una delicada revisión bibliográfica de más de un año, lo que muestra el punto de partida para el estudio de este grupo tan importante, lo que hace evidente la poca solidez en la continuidad de su estudio. La diversidad mostrada es una pauta de lo que se requiere en términos de divulgación y mejoramiento de los listados de áreas naturales del estado de Puebla.
Cuadro 4.10 Listado fícoflorístico realizado para el estado de Puebla

<table>
<thead>
<tr>
<th>Genero y especie</th>
<th>Localidad</th>
<th>Zona de estudio</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphanocapsa rivularis (Rabenhorst 1865)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Chroococcus turgidus (Naegeli 1849)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Microcystis aeruginosa (Kuetz. emend. Elenkin 1924)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Rivularia planctonica (Agardh 1824)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Rivularia spp. (Agardh 1824)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Anabaena spp. (Bory 1822)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Anabaena spp.</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Oscillatoria spp. (Vaucher 1803)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Spirulina spp. (Turpin 1827)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Lemania fluviatilis (Bory 1808)</td>
<td>Tehuacán</td>
<td>En los contornos de los manantiales de San Pedro, San Lorenzo y Ahuejlica, Sin.</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Chrysamoeba radians (Klebs 1893)</td>
<td>Puebla</td>
<td>El Oasis</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Pseudosyncrypta volvox (Gustafson 1942)</td>
<td>Puebla</td>
<td>El Oasis</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Microglena ovum</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td></td>
</tr>
<tr>
<td>Characiopsis longipes (Borzi 1894)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Characiopsis sp. (Borzi 1894)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Microcystis dimidiata (Kuetzing 1833)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Synedra acus (Kuetzing 1833)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Synedra ulna (Ehrenberg 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho, Río Nexapa</td>
<td>MacNaught 1996, Pérez-Juárez 2000</td>
</tr>
<tr>
<td>Synedra tabulata</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Synedra acus var. radians (Kuetzing 1833)</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Synedra acus var. danica (Kuetzing 1833)</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Synedra dorsiventralis (Ehrenberg 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Synedra ulna var. acus (Kuetzing 1833)</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Synedra rumpens var. fragilaroides</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Synedra spp. (Ehrenberg 1830)</td>
<td>Xochiltepec</td>
<td>Laguna de Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
</tbody>
</table>
CONTINUACIÓN CUADRO 4.10

<table>
<thead>
<tr>
<th>Genero y especie</th>
<th>Localidad</th>
<th>Zona de estudio</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphora spp. (Ehrenberg 1840)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Cymbella spp. (Agardh, 1830)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Gomphonema ventricosum (Agardh, 1824)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema parvulum (Kuetzing, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema truncatum (Ehrenberg, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema subclavatum var. subclavatum (Schumann, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema augur (Agardh, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema truncatum var. capitatum (Ehrenberg, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema angustatum var. productum (Kuetzing, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema subclavatum var. mexicanum (Ehrenberg, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema olivaceum (Kuetzing, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema tenellum (Kuetzing, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema constrictum var. capitatum (Ehrenberg, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema sphaerophorum (Ehrenberg, 1830)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Gomphonema spp. (Agardh, 1824)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Nitzschia palea (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Nitzschia acicularis (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Nitzschia lanceolata (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Nitzschia linearis (Agardh)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Nitzschia amphibia (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Nitzschia commutata (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Nitzschia closterium</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Nitzschia hungarica (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Nitzschia spp. (Hassall, 1845)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Hantzchia amphioxys</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Fragilaria crotonensis var. prolongata (Kitton)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 4.10

<table>
<thead>
<tr>
<th>Genéro y especie</th>
<th>Localidad</th>
<th>Zona de estudio</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragilaria construens var. construens (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Fragilaria construens var. venter (Ehrenberg)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Fragilaria capucina (Desmazieres)</td>
<td>Xochiltepec, Atlixco</td>
<td>Laguna de San Felipe, Xochiltepec, Río Nexapa</td>
<td>Ortega 1984, Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Fragilaria pinnata (Ehrenberg)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Fragilaria brevistriata (McCall, 1933)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Fragilaria construens var. binodis (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Fragilaria virescens (Ralfs)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella turgida (Gregory, 1856)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella ventricosa (Kuetzing, 1844)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella tumida (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella lanceolata (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella prostrata (Berkeley)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella cistula (Kirchner, 1878)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella minuta (Russell)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cymbella gracilis (Rabenhorst)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Melosira granulata var. granulata (Ehrenberg, 1861)</td>
<td>Xochiltepec, Atlixco</td>
<td>Laguna de San Felipe Xochiltepec, Río Nexapa</td>
<td>Ortega 1984, Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Melosira granulata var. angustissima (Muller, 1899)</td>
<td>Xochiltepec, Atlixco</td>
<td>Laguna de San Felipe Xochiltepec, Río Nexapa</td>
<td>Ortega 1984, Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Melosira cremulata ambiguа (Simonsen, 1979)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Melosira varians (Ehrenberg, 1836)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Melosira sp. (C.A. Agardh 1824)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cyclotella meneghiniana (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia globiceps (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia microstauron (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia borealis (Carlson)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia divergens (W. Smith)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia nobilis (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia cardinalicus (Tempere y Peragallo 1909)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
</tbody>
</table>
Continúa cuadro 4.10

<table>
<thead>
<tr>
<th>Genero y especie</th>
<th>Localidad</th>
<th>Zona de estudio</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinnularia viridis (Nitzch)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia abaujensis (Ross)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia hemipteraformis</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>(Krammer & Metzeltin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnularia spp. (Erhemberg 1840)</td>
<td>Xochitepec</td>
<td>Laguna de San Felipe Xochitepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Navicula dorembertii (Reichelt)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>Ortega 1984, MacNaught 1996</td>
</tr>
<tr>
<td>Navicula spp. (Boë 1822)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Navicula platatea (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Navicula capitata (Erhemberg)</td>
<td>Xochitepec</td>
<td>Laguna de San Felipe Xochitepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Navicula rhombea (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula cryptocephala (Kutzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula peregrina (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula olbonga (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula gracilla (Erhemberg)</td>
<td>Puebla, Atlixco</td>
<td>Embalse Manuel Ávila Camacho, Río Nexapa</td>
<td>MacNaught 1996, Pérez-Juárez 2000</td>
</tr>
<tr>
<td>Navicula gastrum (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula salinarum* (Grunow 1880)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula amphioys* (Kutzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula protracta* (Grunow)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula anglica* (Ralfs)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula radiosa* (Kutzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula canalis* (Patrick)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Diadesmis peregrina* (W. Smith 1857)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Navicula dicephala* (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula viridula* (Kutzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula exigua* (W. Gregory)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula platystomata (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Pinnularia elginensis* (Gregory)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula mutica* (Kuetzing)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula túrgida* (Erhemberg 1832)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula zebra* (Erhemberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
</tbody>
</table>

(Continúa)
<table>
<thead>
<tr>
<th>Genero y especie</th>
<th>Localidad</th>
<th>Zona de estudio</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithemia sorex (Kutzing)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Rhopalodia gibba (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Caloneis amphisaena (Bory)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Navicula speciosa (Mann)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Cocconeis placentula (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Stauroneis (Ehrenberg 1840)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Eunotia parallela (Erhenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Eunotia lunaris (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Eunotia monodon (Erhenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Surirella tenera var. nervosa (W. Schmidt)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Surirella nervosa (W Schmidt)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Surirella pinnata (W. Smith)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Surirella robusta Var. splendidida (Ehrenberg)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Ceratium hirundinella (Muller 1773)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>MacNaught 1996</td>
</tr>
<tr>
<td>Eutreptia viridis (Perty)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Euglena gracilis (Klebs)</td>
<td>Puebla</td>
<td>Embalse Manuel Ávila Camacho</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Tetraedron regulare (Kuetzing)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Kirchneriella obesa (G.S. West)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Trochiscia aciculifera (Lagerheim)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Golenkinia indet. (Chodat 1894)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Botryococcus braunii (Kutzing)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Coelastrum reticulatum (P.A. Dangeard)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Coelastrum sphaericum (Nagely 1846)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Crucigenia sp. (Morren 1830)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Scenedesmus bijugatus (Turpin)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Pediastrum biradiatum (Meyen)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Pediastrum tetras (Ehrenberg)</td>
<td>Xochiltepec</td>
<td>Laguna de San Felipe Xochiltepec</td>
<td>Ortega 1984</td>
</tr>
</tbody>
</table>
DIVERSIDAD DE ESPECIES VEGETALES

Introducción

Maricela Rodríguez-Acosta

La máxima diversidad de plantas en México se concentra en los estados de Chiapas, Oaxaca y Veracruz; el estado de Puebla ocupa el lugar número 12 (Villaseñor 2003). Sin embargo, datos recientes de la base del Herbario de la Benemérita Universidad Autónoma de Puebla, HUAP (2008), reportan 4 426 especies, incluyendo angiospermas, gimnospermas y pteridofitas, más 88 briofitas (Cuadro 4.11).

Si se toma en cuenta que el inventario realizado en el Valle de Tehuacán no ha sido conjuntado con los registros de la base de datos antes mencionada y con

<table>
<thead>
<tr>
<th>Genero y especie</th>
<th>Localidad</th>
<th>Zona de estudio</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oedogonium indet. (Link 1820)</td>
<td>Xochitepec</td>
<td>Laguna de San Felipe Xochitepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Dangeardinella saltatrix (Pascher)</td>
<td>Puebla</td>
<td>Embalse Manuel Avila Camacho</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Spirogyra indet. (Link 1820)</td>
<td>Xochitepec</td>
<td>Laguna de San Felipe Xochitepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Closterium aciculare (T. West)</td>
<td>Xochitepec</td>
<td>Laguna de San Felipe Xochitepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Closterium parvulum (T. West)</td>
<td>Xochitepec</td>
<td>Laguna de San Felipe Xochitepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Staurastrum paradoxum (Meyen)</td>
<td>Xochitepec</td>
<td>Laguna de San Felipe Xochitepec</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Chara tehuacanensis (Samano Bishop)</td>
<td>Tehuacán</td>
<td>Arroyo Grande</td>
<td>Ortega 1984</td>
</tr>
<tr>
<td>Microcystis aeruginosa (Kutzing)</td>
<td>Izúcar de Matamoros</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Caloneis amphiabaena (Bory)</td>
<td>Izúcar de Matamoros</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Cyclotella melosiroides (Kirchner)</td>
<td>Atlixco</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Cyclotella meneghiniana (Kutzing)</td>
<td>Atlixco</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Frustulia rhomboides (Ehrenberg)</td>
<td>Atlixco</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Hantzschia amphioxys (Ehrenberg)</td>
<td>Izúcar de Matamoros</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Nitzschia palea (Kutzing)</td>
<td>Izúcar de Matamoros, Atlixco</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Rhopalodia gibba (Ehrenberg)</td>
<td>Atlixco</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Euglena acus (Jhanson)</td>
<td>Atzala, Izúcar de Matamoros</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
<tr>
<td>Ankistrodesmus falcatus (Corda) Ralfs</td>
<td>Atzala, Izúcar de Matamoros</td>
<td>Río Nexapa</td>
<td>Pérez-Juárez, 2000</td>
</tr>
</tbody>
</table>
Cuadro 4.11 Riqueza vegetal del estado de Puebla en comparación con México y el Mundo

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Diversidad</th>
<th>Mundial</th>
<th>México</th>
<th>Puebla*</th>
<th>Tehuacán-Cuicatlán**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryophytas</td>
<td></td>
<td>17 000</td>
<td>967</td>
<td>88</td>
<td>172</td>
</tr>
<tr>
<td>Pteridophytas</td>
<td></td>
<td>10 000</td>
<td>1 024</td>
<td>288</td>
<td>172</td>
</tr>
<tr>
<td>Angiospermas</td>
<td></td>
<td>199 350</td>
<td>17 736</td>
<td>3 372</td>
<td>2 012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 415</td>
<td></td>
<td>731</td>
<td>509</td>
</tr>
<tr>
<td>Gimnospermas</td>
<td></td>
<td>750</td>
<td>130</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>Total de especies</td>
<td>286 400</td>
<td>24 380</td>
<td>4 426</td>
<td>2 703</td>
<td></td>
</tr>
</tbody>
</table>

las colectas realizadas recientemente, no queda duda que el número de especies se elevaría, colocando muy probablemente al estado de Puebla dentro de los ocho estados con mayor riqueza de plantas en el país.

Haciendo una comparación entre la distribución de esta diversidad vegetal en lo reportado para el Valle de Tehuacán-Cuicatlán y el resto del estado de Puebla, se pueden observar grandes diferencias numéricas (Cuadro 4.12), confirmando la suposición de que la diversidad florística del estado es más grande de lo que se calculaba anteriormente.

Una de las zonas que más se ha trabajado es el Valle de Tehuacán-Cuicatlán: los estudios realizados durante más de dos décadas proporcionan una gran cantidad de información sobre las especies que habitan en esta zona semiárida, considerada la zona semidesértica más lejana al sur del País (Villasenor et al. 1990).

El Valle de Tehuacán-Cuicatlán es una de las zonas áridas de mayor importancia en el país en lo que a su flora se refiere, debido a que presenta endemismos a nivel de especie (Rzedowski 1992b, y Dávila et al. 1993). Groombridge (1992) reconoce este valle como un centro de diversidad del mundo.

El “Proyecto Flora Útil de los estados de Puebla y Tlaxcala” realizado en la región central del estado

Cuadro 4.12 Distribución de la diversidad vegetal reportada en la literatura y en el Herbario de la BUAP (HUAP)

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Familias</th>
<th>Géneros</th>
<th>Especies</th>
<th>Región</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteridofitas</td>
<td>5</td>
<td>12</td>
<td>33</td>
<td>Tehuacán-Cuicatlán*</td>
</tr>
<tr>
<td>Gimnospermas</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>Tehuacán-Cuicatlán*</td>
</tr>
<tr>
<td>Angiospermas</td>
<td>114</td>
<td>616</td>
<td>1 415</td>
<td>Tehuacán-Cuicatlán*</td>
</tr>
<tr>
<td>Briófitas</td>
<td>22</td>
<td>50</td>
<td>88</td>
<td>Malintzi, Tehuacán**</td>
</tr>
<tr>
<td>Pteridofitas</td>
<td>24</td>
<td>81</td>
<td>288</td>
<td>Puebla***</td>
</tr>
<tr>
<td>Gimnospermas</td>
<td>7</td>
<td>11</td>
<td>35</td>
<td>Puebla***</td>
</tr>
<tr>
<td>Angiospermas</td>
<td>184</td>
<td>1 250</td>
<td>4 103</td>
<td>Puebla***</td>
</tr>
</tbody>
</table>

*Dávila et al. (1993), **Delgadillo et al. (2008), ***HUAP (2008)
de Puebla (Rodríguez-Acosta 1990a), y los trabajos etnobotánicos de Martínez-Alfaro et al. (1995), realizados en la zona limitrofe entre los estados de Puebla, Veracruz e Hidalgo, han sido fundamentales para el conocimiento florístico del primero. Resaltan mayoritariamente las especies vegetales usadas como medicinales, aunque las ornamentales y comestibles también ocupan una posición importante.

De los trabajos florísticos realizados en el pasado y otros recientes, se ha observado que la región Sureste de Puebla está llena de endemismos muy interesantes, a nivel de especies, géneros y familias como Plocosperma buxifolium, único representante de la Plocospermataceae, una familia de plantas endémicas de América (Alvarado-Cárdenas 2004).

El territorio poblano está cubierto por una gran cantidad de tipos de vegetación que van desde los alpinos hasta las selvas tropicales húmedas cercanas al nivel del mar (Figura 4.13). En estos tipos de vegetación se encuentra una rica diversidad florística con abundantes formas y colorido (Figura 4.14), incrementando su valor.

Figura 4.13
Muestra de diferentes tipos de vegetación en el estado de Puebla.
Figura 4.14
Diversidad de formas y color en la flora de Puebla.
Respecto a las especies amenazadas para el estado de Puebla, Vovides y Medina (1994) compilaron una lista de 441 especies de fanerógamas y reportaron 40 especies amenazadas: una extinta, seis en peligro, 11 vulnerables, 15 insuficientemente conocidas, tres indeterminadas y cuatro raras. Para 2001, la norma ecológica NOM-059-SEMARNAT-2001 (DOF 2002) para Puebla incluyó a 58 especies pertenecientes a 17 familias y 36 géneros, de los cuales la familia Cactaceae y la familia Orchidaceae son las mayoritarias, con 22 y ocho especies respectivamente, incluidas en la lista. De estas, 27 plantas tienen la categoría de amenazadas, una extinta, ocho en peligro de extinción y 22 sujetas a protección especial. A este número habría que anexar la presencia de *Fagus mexicana* en el bosque mesófilo de Puebla (Nixon, 1993), cuya distribución se considera relictá (Flores y Gerez, 1994), dentro de los cambios realizados en el libro rojo de la IUCN (2004) y en la lista mundial de árboles amenazados (Olfield *et al.* 1998), para tener una lista mucho más cercana a la realidad.

Si bien resulta positivo que el número de especies amenazadas sea relativamente pequeño, también es preocupante que no refleje su número real. Un ejemplo claro lo constituye *Jatropha rufescens*, especie que no está incluida en ningún listado y que sin embargo no ha sido posible localizarla en campo, a pesar de los esfuerzos dirigidos a encontrarla (Vega, y Jiménez-Ramírez, com. pers.). Esto último nos lleva a la conclusión de que no se tiene conocimiento de la existencia y distribución de especies que requieren de una protección para su conservación.

Como resultado de lo anterior, derivan tres principales consideraciones: 1) La diversidad florística de Puebla parece ser más rica de lo que se ha pensado hasta hoy día. 2) El estado requiere urgentemente de mayor trabajo botánico, sobre todo en las zonas menos estudiadas, que equivala a casi el 50 % del territorio, así como del incremento en las publicaciones de los estudios florísticos que hasta hoy día se tienen. 3) La importancia económica y cultural de la flora poblana ha quedado de manifiesto en los proyectos realizados, por lo que se salta el potencial de su aprovechamiento como un recurso genético cuya utilización debe ser cuidadosamente planificada.

Finalmente, es bastante promisorio el intensivo trabajo que durante los dos últimos años se ha realizado en el Herbario y Jardín Botánico de la BUAP apoyado por diferentes Instituciones como la SEP, CONACYT y Desarrollo Rural, lo que ha permitido incrementar sustancialmente sus colecciones botánicas, que finalmente repercutirán en un incremento del conocimiento de la flora en el estado.

Briofitas

Victor Javier Cid Vázquez, Tobias Rodríguez Ramírez, claudio delgadillo Moya

Las briofitas son plantas que se caracterizan por medir de uno a 35 centímetros de altura, con hojas muy pequeñas (inconspicuas); algunos grupos cuentan con conductos vasculares, no así la mayoría, por lo que también se les denomina plantas no vasculares; incluyen a tres grandes grupos: Anthoceros, Hepáticas y Musgos; viven sobre rocas, suelo, troncos o ramas de los árboles, su reproducción es por alternancia de generación, lo que significa que puede ser de forma sexual (gametofito) y asexual (esporofito). Por lo regular se encuentran en lugares muy húmedos o en hábitats acuáticos, sin embargo, pueden tolerar ambientes extremos (frío y calor), por lo que se les considera organismos cosmopolitas. Actualmente, los de mayor estudio y conocimiento son los musgos, que son estructuralmente más diversos que otras briofitas; a pesar de ser plantas muy pequeñas se pueden reconocer fácilmente ya que forman extensas carpetas verdes en el piso de los bosques. En nuestro país, muchos de ellos tienen importancia económica principalmente en época navideña (para los nacimientos); los estudios de musgos que se tienen están enfocados a su descripción y clasificación. En el Estado de Puebla se tienen algunas referencias sobre musgos colectados: Sosa y Delgadillo (1979) citan la distribución del género *Sphagnum* para Puebla y otros estados; Delgadillo y Zander (1984) enlistaron para el Valle de Tehuacán 57 especies y variedades de musgos y De Luna (1984) describió seis especies para Puebla. Para el Parque Nacional Malintzi, Delgadillo (1971) registró 24 especies y variedades de musgos, siendo el único trabajo realizado en esta zona. Más tarde,
este inventario fue actualizado, reportando 88 especies, subespecies y variedades de musgos (Cuadro 4.13). La familia que presentó mayor diversidad fue la Pottiaceae con 21 especies, porque la mayoría de ellas tienen una distribución amplia en México y en el mundo (Cárdenas 1995). Le siguen el género Didymodon dato que coincide con Herrera (2002), dado que generalmente tienen una gran variedad

La familia que presentó mayor diversidad fue la Pottiaceae con 21 especies, porque la mayoría de ellas tienen una distribución amplia en México y en el mundo (Cárdenas 1995). Le siguen el género Didymodon dato que coincide con Herrera (2002), dado que generalmente tienen una gran variedad morfológica y fisiológica, por lo tanto son especies que se distribuyen en diversos hábitats (Zander 1981). De acuerdo al material colectado en el Parque Nacional Malintzi (Figura 4.15 y Cuadro 4.13), de las 88 especies, subespecies y variedades de musgos encontradas, 66 corresponden a nuevos registros para la Malintzi y 22 especies son nuevos registros para el estado de Puebla; están distribuidas en 50

<table>
<thead>
<tr>
<th>Especie</th>
<th>BAM</th>
<th>BP</th>
<th>BO</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloinella catenula</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anacolia laevisphaera</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anomobryum filiforme var. filiforme</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anomobryum plicatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomobryum prostratum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aongstroemia julacea</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aongstroemia orientalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartramia brevifolia</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartramia potosica ssp. potosica</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Brachythecium occidentale</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachythecium ruderale</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Braunia secunda</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryoerythrophyllum calcarium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryoerythrophyllum ferruginascens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryxiphium norvegicum var. mexicanum</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryum argenteum</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bryum billarderi</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Bryum capillare</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bryum erythroloma</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryum pseudotriquetrum</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campylopus arctocarpus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campylopus rivalis</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Campylopus tallulensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continúa cuadro 4.13

<table>
<thead>
<tr>
<th>Especie</th>
<th>BAM</th>
<th>BP</th>
<th>BO</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceratodon purpureus purpureus</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ceratodon purpureus stenocarpus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtographis mexicanum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditrichum gracile</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didymodon fallax var. reflexus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Didymodon revolutus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Didymodon rigidulus var. gracilis</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Didymodon rigidulus var. icmadophilus</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Didymodon rigidulus var. rigidulus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Didymodon vinealis var. vinealis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encalypta ciliata</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Epipterygium mexicanum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabronia ciliaris</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Funaria hygrometrica var. calvescens</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Funaria hygrometrica var. hygrometrica</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimmia fuscolutea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimmia longirostris</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimmia mexicana</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimmia trichophylla</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Haplocladium angustifolium</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hedwigidium integrifolium</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Holomitrium arboreum</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hypnum revolutum</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hypnum cupressiforme var. lacunosum</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hypnum cupressiforme var. cupressiforme</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Leptodactylum capituligerum</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Leptodactylum flexifolium</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Leptodactylum pungens</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Leptodactylum viticulosoides var. sulphureum</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Continúa cuadro 4.13

<table>
<thead>
<tr>
<th>Especie</th>
<th>BAM</th>
<th>BP</th>
<th>BO</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptodontium viticulosoides var. viticulosoides</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leskea angustata</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mironia ehrenbergiana</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mironia stenotheca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neckera chlorocaulis</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Neckera ehrenbergii</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Neoshartophilus aztecorum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notoligotrichum mexicanum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthotrichum pycnophyllum</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philonotis corticata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiomnium rhynchophorum</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pogonatum campylocarpum</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pogonatum oligodus</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pohlia cruda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pohlia elongata</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Polytrichastrum alpinum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytrichastrum tenellum</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytrichum juniperinum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ptychomitrium lepidomitrium</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Pylaisia falkata</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Racotrium crispipilum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagenotortulaquitoensis</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Schizymenium campylocarpum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schizymenium landii</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sematophyllum adnatum</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Symblepharis vaginata</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Symtrichia amphidiaceae</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Symtrichia andicola</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tayloria splachnoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuidium delicatulum var. delicatulum</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
géneros y 22 familias y constituyen el 25 % del total de musgos para el Estado. A pesar de la falta de trabajos realizados en Briofitas, la diversidad registrada en la Malintzi resulta dos veces mayor que la del volcán Paricutín, ubicado en el estado de Michoacán (Delgadillo y Cárdenas 1995), en donde se enlistaron 43 especies. Lo anterior indica la importancia que la Malintzi tiene para el estado de Puebla y permite conocer las necesidades de un mayor esfuerzo en la exploración de campo con el propósito de incrementar el conocimiento en este grupo de plantas. En la Figura 4.15 se muestra la localización y poligonal del Parque Nacional Malintzi. (Delgadillo et al. com. pers. 2008). En el Cuadro 4.13 se muestra el listado de musgos para el Parque Nacional la Malintzi.

Pteridofitas
(helechos y grupos afines)

Amparo Bélgica Cerón Carpio

Es un grupo de plantas constituido por los comúnmente llamados helechos, así como por licopodios, psilofitas, selaginelas, isoteales y equisetas o colas de caballo que conforman a los grupos afines.

Son plantas que se caracterizan básicamente por la presencia de tejidos vasculares (xilema y floema) que conducen agua y sales minerales, por la ausencia de flores y frutos, por producir esporas en lugar de semillas y por depender del agua externa para reproducirse.

Se les puede encontrar en una gran diversidad de hábitats, desde zonas tropicales hasta desérticas, donde presentan algunas adaptaciones a estas condiciones; su forma de vida puede variar, pues hay desde terrestres hasta epífitas (plantas que crecen sobre otras plantas sin que les causen daño alguno), acuáticas o trepadoras. De este tipo de plantas se estima que existen aproximadamente 10 000 especies a nivel mundial (Tejero-Diez 1998).

Para México, Mickel y Smith (2004) consideran que prosperan aproximadamente 124 géneros y 1 024 especies e infraespecies de este grupo de plantas, lo que equivale al 10 % de las pteridofitas del mundo.

Para el estado de Puebla mencionan 78 géneros, 271 especies, 21 variedades y dos subespecies de Pteridofitas. Sin embargo Cerón–Carpio et al. (2006) en el estudio realizado de las pteridofitas que prosperan en el municipio de Tlatlauquitepec, Puebla, mencionan tres géneros que no habían sido citados en la literatura, así como nueve nuevos registros de especies.

Así mismo, de la revisión realizada a la base de datos del Herbario BUAP, se encontraron ocho registros a nivel de especie, no citados en la literatura para Puebla, acotando que uno de estos ejemplares se encuentra depositado en la colección del Herbario Nacional MEXU, por lo que se recomienda corroborar su identidad taxonómica.

Por todo lo expuesto anteriormente, el estado de Puebla hasta el momento cuenta con aproximadamente un total de 81 géneros y 289 especies de
pteridofitas, pertenecientes a 24 familias, siendo la Pteridaceae y la Polypodiaceae las más diversas. Los géneros con mayor número de especies son: Polypodium, Asplenium, Selaginella, Cheilanthes y Thelypteris (Cuadro 4.14).

En la base de datos del Herbario de la BUAP (HUAP, 2008) se tienen registradas colectas en 43 municipios de los 217 que comprenden al estado de Puebla, siendo los más colectados Tlatlauquitepec, Teziutlán, San Nicolás de los Ranchos, Cuetzalan del Progreso y Aljojuca, por lo que sin duda falta mucho por hacer al respecto en esta entidad federativa y probablemente el número de taxa es mucho mayor al citado por Mickel y Smith (2004).

Si se llevaran a cabo más estudios de las pteridofitas que se encuentran en el estado de Puebla, probablemente se podrían obtener datos de suma importancia, ya que es posible que Puebla esté dentro de los diez estados con mayor número de especies de pteridofitas (Tejero-Diez 1998).

Cuadro 4.14 Lista de géneros de Pteridofitas en Puebla.

<table>
<thead>
<tr>
<th>Género</th>
<th>Especies</th>
<th>Variedades</th>
<th>Subespecies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypodium</td>
<td>22</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Asplenium</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Selaginella</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheilanthes</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Thelypteris</td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elaphoglossum</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Blechnum</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplazium</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenophyllum</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteris</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notholaena</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trichomanes</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiantum</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huperzia</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campyloneurum</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyathea</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dryopteris</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pellaea</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Polystichum</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrolepis</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenitis</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 4.14

<table>
<thead>
<tr>
<th>Género</th>
<th>Especies</th>
<th>Variedades</th>
<th>Subespecies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sticherus</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argyrochosma</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bommeria</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botrychium</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dennstaedtia</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephrolepis</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleopeltis</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Woodwardia</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Athyrium</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypolepis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopodium</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marattia</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mildella</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophioglossum</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peclumna</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Phanerophlebia</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pityrogramma</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psilotum</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteridium</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Woodsia</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tectaria</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arachniodes</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azolla</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolbitis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cochliidium</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystopteris</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicksonia</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didymochlaena</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplopterygium</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equisetum</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Continúa cuadro 4.14

<table>
<thead>
<tr>
<th>Género</th>
<th>Especies</th>
<th>Variedades</th>
<th>Subespecies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleichenella</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemionitis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holodictyum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lellingeria</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llavea</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonchitis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophosoria</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopodiella</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lygodium</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsilea</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megalastrum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melpomene</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microgramma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niphidium</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontosoria</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onocleopsis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmanda</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Phlebodium</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogyria</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccoloma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scoliosorus</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stigmopteris</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terpsichore</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danaea</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vittaria</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrothelypteris</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alsophila</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeropteris</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheirolepton</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>289</td>
<td>21</td>
<td>2</td>
</tr>
</tbody>
</table>

De las especies para Puebla según la NOM-059-SEMARNAT-2001 (DOF 2002), seis especies se reconocen en peligro de extinción: Alsophila firma (Figura 4.16), Cyathea divergens var. tuerckheimii, Cyathea fulva, Cyathea schiedeana, Dicksonia gigantea y Selaginella porphyrospora. Además se incluyen tres especies como amenazadas: Asplenium auritum, Campyloneurum phyllitides y Polypodium triseriale. Cabe destacar que de las 14 especies de helechos arborescentes registradas para México, nueve (64 %) se encuentran en el estado de Puebla. De estas plantas de porte majestuoso, que para llegar a alcanzar 10 m de altura debieron transcurrir entre 60 a 100 años, se citan para México varias especies de las que se puede obtener el "maquique", material formado por las raíces adventicias de algunas especies de helechos arborescentes.

Por su uso y comercialización como sustrato para cultivar epífitas y como material de construcción y el indiscriminado deterioro de su hábitat, muchas de las especies de México se encuentran amenazadas. Desafortunadamente, numerosas estructuras y artesanías que se encuentran en venta en las calles y en los viveros, provienen de helechos de más de 100 años de edad, que han sido sacrificados para poder trabajar artesanalmente el "maquique" (Palacios-Rios, 2006). Por lo anterior es preponderante llevar a cabo programas de conservación de estas especies tan ancestrales.

Angiospermas o Magnoliophyta
Maneléa Rodríguez-Acosta, Agustina Rosa Andrés-Hernández y Yadira Bock Sánchez

Las angiospermas incluyen todas aquellas plantas que tienen flores y constituyen el grupo más numeroso sobre la tierra. Las Magnoliophyta se agrupan en dos clases: Magnoliopsida (dicotiledóneas) y Liliopsida (monocotiledóneas). Las primeras se caracterizan por presentar plántulas con dos o más cotiledones, flores con 4 o 5 sépalos y pétalos y hojas con venación ramificada; son el grupo con mayor diversidad en México, con 17 736 especies. La clase Liliopsida, con 4 523 especies (Villaseñor 2004), se caracteriza por presentar plántulas con un sólo cotiledón y flores con 3 sépalos y pétalos o multíplos de tres y hojas con venación paralela.

Para Puebla se reportan 4 103 especies: 3 372 corresponden a Magnoliopsida y 731 a Liliopsida (HUAP, 2008), lo que representa el 19 % de las dicotiledóneas y el 16 % de las monocotiledóneas.
reportadas para México, lo que significa que una quinta parte de la diversidad del país se encuentra en un sólo estado cuya superficie abarca 34 280 km² (INEGI 2004), equivalente al 1.7 % de la superficie del país. A grandes rasgos, el estado de Puebla se puede dividir en tres zonas florísticas: Valle de Tehuacán, zona central y Sierra Norte de Puebla. Específicamente, la riqueza del Valle de Tehuacán se debe a que se encuentra localizado en una posición fitogeográfica estratégica donde se observa la participación del componente típicamente tropical y de aquél propio de las zonas áridas mas septentrionales, lo que explica la gran riqueza concentrada en tan pequeña área (Villaseñor et al. 1990). Dávila et al. (1993) reporta 161 familias de angiospermas, de las cuales 128 son dicotiledóneas y 33 monocotiledóneas, 862 géneros de angiospermas en esta zona y un total de 2 703 especies. Entre las especies abundantes en el Valle de Tehuacán-Cuicatlán están los techos (Neobuxbaumia sp.), cardonales (Pachycereus sp.), pata de elefante (Beaucarnea gracilis), izotes (Yucca periculosa), lechuguillas (Hechtia podantha), biznagas (Ferocactus sp., Mammillaria sp.), garambullos (Myrtillocactus sp.), mezquites (Prosopis sp.), y diferentes especies de agaves entre otras más. Dentro del Valle se han realizado algunos trabajos de tipo etnobotánico. Casas et al. (2000) reportan en Zapotitlán de las Salinas 808 especies útiles y Paredes-Flores et al. (2007) reconocen 82 familias de las cuales Poaceae, Cactaceae y Asteraceae son numerosas. También Arellano (2002) en San Juan Rayo reportó 135 especies útiles; las más abundantes son: Cactaceae, Asteraceae y Euphorbiaceae.

En la zona central del estado de Puebla, el proyecto “Flora Útil de los Estados de Puebla y Tlaxcala” logró conjuntar esfuerzos en torno al conocimiento florístico y etnobotánico de la zona (Rodríguez-Acosta 1990a). Este proyecto representa uno de los esfuerzos coordinados que se han realizado en la Benemérita Universidad Autónoma de Puebla al realizar inventarios completos en los municipios de Cuauhtinchán (Lazcano et al. 1987; Rodríguez et al. 1992), Amozoc (Carreto et al., 1993), Atlixco (Dorado et al. 1989), Tecali de Herrera (Linares 1991), San Nicolás de los Ranchos (Tlapa 1991, Rodríguez y Tlapa 1992, 1997), Guadalupe Victoria (Suazo 1992, Suazo y Rodríguez 1994a, 1994b) y San Miguel Canoa (Macias, 1996), que han estudiado los usos de las especies vegetales de la región central del Estado. Los resultados de este proyecto han proporcionado un listado de más de 1 500 especies (Cuadro 4.15) (Rodríguez-Acosta com. pers).

Quizá la zona menos estudiada la constituye la región Suroeste de Puebla, ya que si bien fue estudiada por Miranda (1942, 1943), no se tiene un reporte

<table>
<thead>
<tr>
<th>Municipios</th>
<th>Especies</th>
<th>Géneros</th>
<th>Familias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amozoc</td>
<td>337</td>
<td>234</td>
<td>81</td>
</tr>
<tr>
<td>Atlixco</td>
<td>359</td>
<td>227</td>
<td>81</td>
</tr>
<tr>
<td>Cuauhtinchán</td>
<td>304</td>
<td>210</td>
<td>78</td>
</tr>
<tr>
<td>Guadalupe Victoria</td>
<td>220</td>
<td>140</td>
<td>52</td>
</tr>
<tr>
<td>San Miguel Canoa</td>
<td>164</td>
<td>70</td>
<td>47</td>
</tr>
<tr>
<td>San Nicolás de los Ranchos</td>
<td>620</td>
<td>337</td>
<td>89</td>
</tr>
<tr>
<td>Tecali de Herrera</td>
<td>233</td>
<td>166</td>
<td>63</td>
</tr>
<tr>
<td>San Luis Teolocholco, Tlax.</td>
<td>191</td>
<td>137</td>
<td>63</td>
</tr>
</tbody>
</table>

Completo actualizado al respecto. Sin embargo, existen algunos trabajos realizados en el sur de Puebla por diferentes investigadores, incluyendo los trabajos aislados sobre botánica económica y algunos de tipo florístico entre los que se pueden mencionar las colectas realizadas en el municipio de Huehuetlán (Hernández et al. 1995 y Hernández 2002) y el estudio de asociaciones de plantas realizado en el ejido Las Casitas del Municipio de Izúcar de Matamoros (Rivera, 2002) donde se reconocieron 131 especies de 49 familias. Si bien en esta zona se han postergado los estudios florísticos, actualmente se están intensificando las colectas por parte del Herbario y el Jardín Botánico de la BUAP.

Los trabajos de Martínez-Alfaro et al. (1995) en la Sierra Norte de Puebla, constituyen la mejor referencia para conocer la diversidad vegetal existente en esa zona. Producto de su trabajo se reportan 616 especies que se utilizan con diferentes propósitos en la zona de Puebla colindante con los estados de Veracruz e Hidalgo. Villalobos (1994) reportó 210 especies comestibles de las cuales 208 son angiospermas. Más tarde, Martínez et al. (2007) reportaron 99 familias, 238 géneros y 319 especies asociadas a las zonas cafetaleras en 25 municipios de esta zona. Recientemente, Contreras et al. (2008), inventariaron 1 020 especies en el área natural protegida de la cuenca del Río Necaxa.

En el Cuadro 4.16 se muestran las familias más abundantes en México y lo registrado en el Herbario HUAP, Valle de Tehuacán y centro de Puebla. Aquí se puede ver la abundancia de las siete familias más sobresalientes en Puebla con respecto a México. Los porcentajes correspondientes son: Asteraceae (margaritas, cempazúchitl) 20 %, Leguminosae (legumbres) 40 %,
DIVERSIDAD

Poaceae (maíz, trigo) 23 %, Orchidaceae (orquídeas, vainilla) 10 %, Euphorbiaceae (nochebuena) 19 %, Lamiaceae (menta) 27 %, Solanaceae (tabaco) 30 % y Rubiaceae (café) 18 %. De todas estas familias, la de las legumbres es la más rica, lo que resulta muy importante por su función en la fijación de nitrógeno.

Familias relevantes en el Estado

La familia Poaceae también está ampliamente representada en Puebla y se considera de gran valor por su papel como fuente de forraje para alimentación del ganado y en la alimentación humana. Aunque la familia Asteraceae es la familia más rica en cuanto a diversidad de especies en México (casi 16 %), en Puebla sobrepasa este porcentaje por un 4 %, lo que indica un mayor número de especies que le pertenece. El 20 % presente en Puebla puede atribuirse en primer lugar a la importante presencia de los bosques templados de coníferas y encinos en el estado y en segundo término al grado de perturbación en las zonas con cobertura vegetal de las áreas estudiadas, provocadas por los asentamientos humanos ubicados en Puebla, lo que favorece este tipo de plantas (Olivas y Rodríguez-Acosta 1991).

Haciendo un análisis de la distribución de las especies vegetales mencionadas, se puede observar que la diversidad florística inventariada hasta ahora corresponde casi al 50 % de su territorio, quedando la información del otro 50 % pendiente de recabar. Esta afirmación se debe a que en 37 (17 %) municipios de Puebla no se ha realizado trabajo de campo alguno y de 133 de ellos (61.29 %) se tienen muy pocos registros (Figura 4.17), lo que muestra que aún falta muchas áreas por inventariar. La diversidad de angiospermas en el estado de Puebla es más grande de lo que se había estimado, por lo que se requiere intensificar los trabajos de exploración botánica hacia las áreas cuyo estudio se ha postergado, antes de que su destrucción por causa humana lo impida. Con un pleno conocimiento de este grupo de plantas, se podrán ofrecer a la sociedad mexicana alternativas concretas para su uso y aprovechamiento.

Figura 4.17 Municipios colectados en el estado de Puebla.

HUAP (2008). Municipios colectados en el estado de Puebla. En esta figura se muestra el número de municipios de puebla indicando por el color, el número de ejemplares contabilizados en la base de datos hasta el 2008. La anterior permite conocer los municipios en los cuales se deben intensificar los trabajos de colecta, por ejemplo: 133 municipios cuentan con 99 o menos registros de plantas en la base de datos del Herbario de la BUAP. Hay que hacer notar que durante 2009 se han incorporado cerca de 2000 registros a la base, lo cual podría modificar los datos que aquí se presentan.
Las gimnospermas son plantas con semillas desnudas que generalmente se producen en conos o en estróbilos. Este grupo está representado por cuatro divisiones: Pnyophyta, Gynkgophyta, Cycadophyta y Gnetophyta (Cuadro 4.17).

Este grupo de plantas en Puebla incluye siete familias, 11 géneros, 30 especies y seis infraespecies para un total de 36 taxa (Cuadro 4.18; Cuadro 4.19), de las cuales 17 corresponden a las Pinaceae que incluye los géneros Pinus (16 taxa, 35 % de las reportadas en México para Puebla) y Abies religiosa (oyamel o abeto), que junto con algunas especies de la familia Cupressaceae (ciprés o cedro blanco y enebros o sabinos) y Podocarpus reichei, son elementos importantes de los bosques templados a lo largo del Eje Neovolcánico (Izta-Popo, Malintzi, Pico de Orizaba) y la Sierra Madre Oriental (Sierra Norte de Puebla, Sierra Negra).

Los pinos, los oyameles y los cipreses son una fuente importante de madera y otros productos industriales (resinas, corteza) y alimenticios (piñones),

Cuadro 4.17 Riqueza de gimnospermas en el estado de Puebla en el contexto mundial.

<table>
<thead>
<tr>
<th>Phyla</th>
<th>Mundial Géneros / Especies</th>
<th>México Géneros / Especies</th>
<th>Puebla Géneros / Especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conyferophyta</td>
<td>50 / 550</td>
<td>10 / 83</td>
<td>7 / 23</td>
</tr>
<tr>
<td>Cycadophyta</td>
<td>11 / 140</td>
<td>3 / 45</td>
<td>3 / 5</td>
</tr>
<tr>
<td>Ginkgophyta</td>
<td>1 / 1</td>
<td>Sólo cultivado</td>
<td>Sólo cultivado</td>
</tr>
<tr>
<td>Gnetophyta</td>
<td>3 / 70</td>
<td>1 / 5</td>
<td>1 / 1</td>
</tr>
</tbody>
</table>

Cuadro 4.18 Número de Especies de gimnospermas en Puebla respecto a México y el mundo.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Mundial Géneros / Especies</th>
<th>México Géneros / Especies</th>
<th>Puebla Géneros / Especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zamiaceae</td>
<td>8 / 100</td>
<td>3 / 47</td>
<td>3 / 5</td>
</tr>
<tr>
<td>Pinaceae</td>
<td>11 / 232</td>
<td>4 / 60</td>
<td>2 / 17</td>
</tr>
<tr>
<td>Cupresaceae</td>
<td>27 / 137</td>
<td>3 / 23</td>
<td>2 / 4</td>
</tr>
<tr>
<td>Taxodiaceae</td>
<td>3 / 5</td>
<td>1 / 1</td>
<td>1 / 1</td>
</tr>
<tr>
<td>Podocarpaceae</td>
<td>18 / 173</td>
<td>1 / 4</td>
<td>1 / 1</td>
</tr>
<tr>
<td>Taxaceae</td>
<td>5 / 17</td>
<td>1 / 1</td>
<td>1 / 1</td>
</tr>
<tr>
<td>Ephedraceae</td>
<td>1 / 35</td>
<td>1 / 5</td>
<td>1 / 1</td>
</tr>
<tr>
<td>Totales</td>
<td>73 / 699</td>
<td>14 / 141</td>
<td>11 / 30</td>
</tr>
</tbody>
</table>

Cuadro 4.19 Listado de especies de gimnospermas de Puebla

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especie</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephedraceae</td>
<td>Ephedra compacta Rose</td>
<td>pitamoreal, popotillo</td>
</tr>
<tr>
<td></td>
<td>Abies religiosa (Kunth) Schltdl. & Cham.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus ayacahuite Ehrenb. ex Schltdl. var. ayacahuite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus ayacahuite C. Ehrenb. ex Schltdl. var. retchii (Roedl) G.R. Shaw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus cembroides Zucc., subsp. cembroides var. cembroides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus chiapensis (Martínez) Andersen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus devoniana Lindl.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus Greggii Engelm. ex Parl.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus hartwegii Lindl.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus lasianii Roedl. ex G. Gordon & Glendinning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus leiophylla Schiede ex Schltdl. y Cham. var. leiophylla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus maximina H.E. Moore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus montezumae Lamb. var. gordoniana (K.T. Hartweg ex G. Gordon) Silba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus montezumae Lamb var. montezumae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus oocarpa Schiede ex Schltdl.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus patula Schltdl. & Cham. var. patula</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus pringlei Shaw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus pseudostrobus Lindl. var. apulcensis (Lindl.) Shaw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus pseudostrobus Lindl. var. pseudostrobus fo. protoberus Martinet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus pseudostrobus Lindl. var. pseudostrobus fo. pseudostrobus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinus teecore Schltdl. & Cham.</td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td>Cupressus lusitanica Mill. var. lusitanica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cupressus lusitanica Mill. var. benthamii (Endl.) Carrière</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus flaccida Schltdl. var. flaccida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus flaccida Schltdl. var. poblana Martinet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus deppeana Steud.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus monticola Martinet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cupresaceae</td>
<td>Cupressus lusitanica Mill. var. lusitanica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cupressus lusitanica Mill. var. benthamii (Endl.) Carrière</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus flaccida Schltdl. var. flaccida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus flaccida Schltdl. var. poblana Martinet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus deppeana Steud.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus monticola Martinet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podocarpaceae</td>
<td>Podocarpus reichei J. Buchholz & N.E. Gray</td>
<td></td>
</tr>
<tr>
<td>Taxaceae</td>
<td>Taxus globosa Schltdl.</td>
<td></td>
</tr>
<tr>
<td>Taxodiaceae</td>
<td>Taxodium mucronatum Ten.</td>
<td></td>
</tr>
<tr>
<td>Zamiaceae</td>
<td>Ceratozamia mexicana Brongn. var. robusta (Miq.) Dyer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dioon californii De Luca & Sabato</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dioon caputii De Luca, Sabato & Vázquez, Torres</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dioon edule Lindl.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zamia loddigesii Miq.</td>
<td></td>
</tr>
</tbody>
</table>

que están ligados de manera importante a la economía regional. De las otras familias de gimnospermas presentes en el estado, la Zamiaceae tiene cinco taxa, mientras el resto sólo cuenta con una especie en cada caso. *Ephedra compacta* se localiza en regiones áridas, *Taxus globosus* y *Podocarpus reichei* son especies características del bosque mesófilo, *Taxodium mucronatum* (ahuehuete) es el árbol nacional (Martínez 1963) (Figura 4.18) y está asociado a cuerpos de agua; las Zamiaceae (cicadas) son plantas con aspecto de palma, consideradas en peligro de extinción, cuya extracción y comercio están prohibidos por las leyes mexicanas (Vovides et al. 1983, Vovides et al. 2004).
ganelos del citoplasma) y sus células no cuentan con pared celular, su nutrición es heterófita, es decir no producen su propio alimento, y lo obtienen de la ingesta de otros organismos o subproductos de éstos; su metabolismo es aerobio (consumen oxígeno y desechan dióxido de carbono); la reproducción es predominantemente sexual, aunque existen algunos que se reproducen asexualmente; casi todos pueden percibir y responder a los estímulos del medio y tienen la capacidad de desplazarse cuando menos en alguna etapa de su vida; su crecimiento tiene límites precisos, salvo pocas excepciones y presentan un esqueleto interno llamado endoesqueleto (vertebrados) o externo, llamado exoesqueleto (invertebrados).

En el presente capítulo se reporta un total de 1 274 especies pertenecientes al reino animal, lo que representa el 2.1 % de la diversidad nacional, cifra que incluye al zooplancton, helmintos, insectos, peces, anfibios, reptiles, aves y mamíferos. Cabe destacar que la avifauna es el grupo mayormente representado en el estado, con 54.7 % de las especies descritas para México y el grupo con menor representatividad son los peces, con tan sólo 47 especies de las 2 692 descritas a nivel nacional, es decir el 1.75 %.

Zooplancton

Ernesto Mangas-Ramírez

La terminología del plancton (del griego “errante”) se refiere a la comunidad de invertebrados acuáticos que vive suspendida en el seno del agua; los organismos planctónicos se caracterizan por su tamaño pequeño, ya que varían desde micrómetros hasta unos cuantos milímetros y por tal razón se encuentran expuestos a ser transportados por las corrientes de agua (Wetzel 2001). Las comunidades plantonológicas juegan un papel importante dentro de la productividad de un sistema acuático; el zooplancton regula la biomasa fitoplanctónica (microalgas) y bacteriana, además de que aporta materia orgánica particulada a la columna de agua (Finlay et al. 1988). El zooplancton de aguas epicontinentales está compuesto por varias comunidades: los protozoos (organismos unicelulares), los rotíferos (filtradores que presentan una corona ciliar para atrapar el alimento) y grupos

Figura 4.18 Ahuehuete (Foto: Maricela Rodríguez-Acosta).

En conclusión: las gimnospermas en Puebla son componentes importantes de los bosques templados, en altitudes elevadas, que han sido hasta la fecha las fuentes de productos forestales más importantes, además de prestar servicios ambientales. Su uso intenso ha provocado la disminución de los tipos de vegetación donde ellas se encuentran, por lo que el estudio de su diversidad y distribución nos ayuda a entender su problemática, manejo y aprovechamiento.

DIVERSIDAD DE ESPECIES ANIMALES

Introducción

Blanca Cantú Montemayor

El reino animal está formado por una amplia variedad de organismos que tienen en común ciertas características que los distinguen de otros reinos: son pluricelulares (constituidos por más de una célula, las cuales están reunidas estructural y funcionalmente), eucariontes (células con núcleo celular bien definido, delimitado por una membrana, al igual que los org...
de crustáceos (animales acuáticos de apéndices articulados) como cladóceros (herbívoros filtradores) y copépodos (animales cuyos apéndices funcionan a manera de remo). El establecimiento de las diversas poblaciones de cada comunidad depende de la probabilidad de encontrar alimento, de aparearse y de escapar de los depredadores. Todas estas probabilidades están altamente condicionadas a las características del ambiente físico y químico del agua (Conover 1968, Margalef 1983, Wetzel 2001).

En el estado de Puebla, el inventario (INEGI 2000) de sistemas de agua naturales indica un total de 434 ha de superficie ocupadas por un complejo de 15 lagos y lagunas naturales, todas ellas ubicadas en ocho municipios del estado. De ellas, se destacan las lagunas de Alchichica con 100 ha y la laguna de Epatlán con 54 ha. Debido a la manera irregular en que el agua está distribuida, se han construido 14 grandes presas, con un total de superficie embalsada de 5 320 ha de las cuales la presa Manuel Ávila Camacho mejor conocida como “Lago de Valsequillo” ocupa 3 000 ha.

Referente a las investigaciones del zooplancton, una buena parte de estudios realizados principalmente por la Benemérita Universidad Autónoma de Puebla se han llevado a cabo en el lago de Valsequillo. El sistema artificial de mayor envergadura, la laguna de Alchichica, ha sido sujeta a una gran cantidad de estudios, principalmente por la Universidad Nacional Autónoma de México. En el primer caso se han realizado registros taxonómicos, y evaluado el efecto de la remoción de lirio acuático en las poblaciones planctónicas naturales (Mangas-Ramírez 2000, Bernardino 2001), mientras que en Alchichica los estudios predominantes están relacionados a la ecología de comunidades y descripciones taxonómicas (Montiel-Martínez et al. 2008; Sánchez et al. 2008).

En el universo del plancton lacustre, donde el alimento se encuentra en una suspensión diluida de partículas pequeñas no móviles, las formas de captación más difundidas son la filtración y la sedimentación. La filtración se efectúa mediante la generación de corrientes que pasan a través de un colador formado por apéndices especializados. De esa manera obtienen su comida la mayoría de los copépodos y cladóceros (Margalef 1983, Wetzel 2001).

La sedimentación de partículas se logra por movimientos rotatorios que dan origen a corrientes en torbellinos dirigidas hacia la región bucal. Debido a que gran parte del alimento de estos pequeños filtradores o sedimentados consiste en algas, aunque no con exclusividad, se les considera zooplancton herbívoros (Elias-Gutiérrez 1996).

La importancia del zooplancton radica en que son los consumidores primarios, por lo que se les considera el eslabón entre los productores constituidos por microalgas acuáticas y los consumidores secundarios, como algunos insectos acuáticos, larvas de pececillos de pequeño tamaño, que sirven de alimento a peces más grandes. Los factores que afectan la abundancia y el número de especies del zooplancton necesariamente alteran las comunidades de organismos que dependen de ellos para su subsistencia. Muchas especies del zooplancton presentan endoenzimas que actúan descomponiendo rápidamente el cuerpo de los organismos del zooplancton cuando mueren; esto es de gran importancia para los peces cuando son jóvenes, ya que carecen de jugos digestivos para digerir su alimento. Así, el zooplancton contribuye a ser asimilado fácilmente por los peces, permitiendo su desarrollo en los lagos (Elias-Gutiérrez 1996).

El conocimiento del zooplancton de agua dulce es realmente escaso; actualmente existe en México un reducido número de especialistas que trabajan con estos organismos y la taxonomía fina para especies mexicanas es relativamente reciente. Según la síntesis histórica realizada por Elias-Gutiérrez (1996) los estudios del zooplancton en nuestro país inician en 1916 y a la fecha se tienen estudiados menos del 1 % del total de cuerpos de agua. El propio Gutiérrez (1996) diseña las primeras claves para cladóceros en territorio mexicano después de trabajar con un complejo de embalses y lagos en México. En el estado de Puebla se han estudiado y reportado un total de nueve reservorios, seis de ellos incluidos dentro del Parque ecológico recreativo General Lázaro Cárdenas (Flor del Bosque) y tres sistemas independientes, un sistema natural, la Laguna de Alchichica y dos sistemas artificiales, Bordo Amazcalli y Embalse Manuel Ávila Camacho conocido como Lago de Valsequillo, el cual contiene especies de pulgas de agua muy importantes como los géneros Daphnia (Figura 4.19) y Simocephalus (Figura 4.20). Su ubicación se encuentra señalada en la Figura 4.21. y Cuadro 4.20.
Figura 4.19 Daphnia pulex o pulga de agua en el Lago de Valsequillo.

Figura 4.20 Simocephalus vetulus representante del zooplancton del lago de Valsequillo.

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Especie</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladoceros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flor del Bosque</td>
<td>Daphnia pulex</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Moina macrocopa</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Alona spp.</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td>Flor del Bosque Bordo II</td>
<td>Daphnia complejo pulex</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Moina macrocopa</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Alona spp.</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Ceriodaphnia reticulata</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td>Flor del Bosque Bordo III</td>
<td>Daphnia pulex</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Moina macrocopa</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Alona spp.</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td>Flor del Bosque La Majada</td>
<td>Daphnia pulex</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Moina macrocopa</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Alona spp.</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td>Flor del Bosque El Charro</td>
<td>Moina macrocopa</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Alona spp.</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td>Flor del Bosque El Zapote</td>
<td>Moina macrocopa</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td></td>
<td>Alona spp.</td>
<td>Palacios-Sánchez 1998</td>
</tr>
<tr>
<td>Valsequillo (18° 57’ latitud norte y 9° 06’ con 96° 15’ longitud oeste)</td>
<td>Daphnia pulex</td>
<td>Mangas-Ramírez 2000</td>
</tr>
<tr>
<td></td>
<td>Ceriodaphnia dubia</td>
<td>Mangas-Ramírez 2000</td>
</tr>
<tr>
<td></td>
<td>Moina macrocopa</td>
<td>Mangas-Ramírez 2000</td>
</tr>
<tr>
<td></td>
<td>Simocephalus vetulus</td>
<td>Mangas-Ramírez 2000</td>
</tr>
<tr>
<td></td>
<td>Pleuroxus denticulatus</td>
<td>Mangas-Ramírez 2000</td>
</tr>
<tr>
<td></td>
<td>Ceriodaphnia reticulata</td>
<td>Mangas-Ramírez 2000</td>
</tr>
<tr>
<td>Bordo Amatcalsi, municipio de Atlixco (entre los paralelos 18° 56’ latitud norte y 98° 28’ longitud oeste)</td>
<td>Daphnia pulex</td>
<td>Águila y Elvira 2002</td>
</tr>
<tr>
<td></td>
<td>Alona spp.</td>
<td>Águila y Elvira 2002</td>
</tr>
<tr>
<td></td>
<td>Ceriodaphnia reticulata</td>
<td>Águila y Elvira 2002</td>
</tr>
<tr>
<td>Copepodos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valsequillo</td>
<td>Acantocyclops vernalis</td>
<td>Salazar 1996</td>
</tr>
<tr>
<td></td>
<td>Macrocylops ater</td>
<td>Salazar 1996</td>
</tr>
<tr>
<td>Alchichica (19° 24’ latitud norte y 97° 24’ longitud oeste, a 2,300 msnm)</td>
<td>Leptodiaptomus garciai</td>
<td>Montiel-Martínez et al. 2008</td>
</tr>
<tr>
<td>Rotíferos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alchichica</td>
<td>Hexarthra jenkinae</td>
<td>Sánchez et al. 2005</td>
</tr>
<tr>
<td></td>
<td>Brachionus plicatilis</td>
<td>Sánchez et al. 2005</td>
</tr>
</tbody>
</table>
Figura 4.21 Reservorios de especies de zooplancton en el estado de Puebla.
Helmintos intestinales
Alma Delia Ramirez Guarneros y Lino Zumaquero Rios.

Las infecciones por helmintos son conocidas desde la antigüedad, sin embargo, hasta hoy no han podido ser erradicadas en el estado de Puebla ni en el país. En las últimas décadas se han establecido campañas erráticas de desparasitación iatrogénicas, que han provocado resistencia de los parásitos a algunos fármacos. Para el año 2007 la Secretaría de Salud de México señalaba a las helmintiasis como la séptima causa de morbilidad, y en particular, en el estado de Puebla, se presentaron 11 731 casos, ocupando el quinto lugar Nacional (SSA 2007).

En trabajos reportados por Ramirez-Guarneros (2005), resultado de diez años de investigación en la población pediátrica de diversas regiones del estado de Puebla, se encontró que la mayor prevalencia de parasitosis por Ascaris lumbricoides fue detectada en 1987 en Ciudad Serdán, en el 59.9 % de la población estudiada, identificando en esta zona con un bajo grado de cultura en salud que origina una inadecuada utilización de los servicios médicos. Para el 2007, en la jurisdicción sanitaria de El Seco, la ascariosis sigue siendo una de las quince principales causas de morbilidad con 929 casos. Montaño et al. (2008), detectaron una alta prevalencia de geohelmintos en Palmar de Bravo, donde entre las especies más incidentes estuvieron Ascaris lumbricoides, Trichuris trichura y ancylostomoides; en este caso se notificaron dos niños emisores de huevos de Fasciola hepatica, trematódeo notificado por Montaño et al. (2008) en zonas del municipio Atlixco.

En los mismos trabajos realizados por el grupo de Ramirez Guarneros, las mayores prevalencias de hímenolepiosis (entre el 17 % y el 19 %) se encontraron en las poblaciones de Nealitcan, San Gregorio Zacapechpan y Acuxcomac, todas clasificadas demográficamente como suburbanas (Ramirez-Guarneros 2005).

En los últimos años los avances en el campo de la salud, han permitido mejorar de manera considerable los niveles de bienestar en casi todo el mundo. Sin embargo, en México, si bien el balance en materia de salud es positivo, todavía queda mucho por hacer en algunas regiones donde ciertas enfermedades, como las transmisibles, siguen siendo prevalentes.

Insectos de Puebla
Agustín Aragón García, Ana María Tapia-Rojas, Betzabeth Cecilia Pérez Torres

Introducción
De las especies animales y vegetales descritas en 1988, casi un 60 % son insectos, pudiendo existir entre cinco y 40 millones de especies que aún no han sido descritas (Morón y Valenzuela, 1993). Gastón y Spicer (1998) mencionan que estos organismos pueden tener entre 2 a 100 millones de especies. Su importancia radica en varios aspectos: sus hábitos alimenticios son muy diversos, forman parte de casi todas las redes tróficas continentales y litorales y, además poseen una enorme densidad poblacional; esta última fue calculada por Stork (1988) en 42 millones de insectos por hectárea.

Su cuerpo está dividido en cabeza, tórax y abdomen. En la cabeza se encuentra un par de antenas (sirven para captar aromas y orientarse), los apéndices bucales que varían de acuerdo al alimento que consuman (masticadores, lamedores, chupadores y picadores) y los ojos que son compuestos y están formados por cientos de facetas; en el tórax se encuentran insertadas tres pares de patas y las alas; el abdomen presenta diferente número de segmentos de acuerdo a la especie.

La información disponible sobre las especies de insectos del estado de Puebla hasta 1986 era escasa, derivada de colectas esporádicas, cuyos ejemplares quedaron depositados en distintas colecciones nacionales o extranjeras, pero sin representantes en una colección estatal. A partir del trabajo realizado por el Instituto de Ciencias de la BUAP y la Escuela de Biología (Ver Estudio de caso 3) de la misma institución, se cuenta con ejemplares depositados en dos colecciones institucionales de centros de educación superior, en las que existen representantes de los siguientes órdenes: Odonata, Orthoptera, Dermaptera, Blattoda, Mantida, Phasmida, Hemiptera, Neuróptera, Coleóptera, Diptera, Lepidóptera e Hymenóptera.

Descripción de los Órdenes representativos en Puebla

- Odonata. Etimológicamente el nombre proviene de la raíz griega Odous que significa diente, refiniéndose...
específicamente a las piezas bucales de este orden de insectos. Su tamaño varía de 3 a 9 cm. Su cuerpo es alargado y generalmente con una llamativa coloración; sus dos pares de alas son membranosas y alargadas; las patas son raptoras que funcionan para la caza y pesca. Se encuentra dividido en dos subórdenes: Zygoptera, conocidos como “caballitos del diablo”, que poseen un cuerpo estrecho y sus alas son semejantes tanto en forma como en tamaño y venación; el otro grupo se denomina Anisoptera o “libélulas” que se caracteriza porque sus alas anteriores y posteriores son diferentes y su cuerpo es ancho (Notario 1998). Los registros que se tienen del orden Odonata en Puebla corresponden a 31 especies en total, de las que 14 especies pertenecen al suborden Zygoptera (Cuadro 4.21) y las otras 17 al suborden Anisoptera (Cuadro 4.22). Los zygopteros se encuentran reunidos en cinco familias, nueve géneros y 14 especies. La especie más abundante es Hetaerina occisa y las menos representadas son: Hesperagrion heterodoxum, Megaloprepus caerulatus, Acanthagrion sp. y Argia plana. De los Anísópteros la especie con el mayor número de ejemplares es Rhionaeschna multicolor y las menos representadas son Phyllogomphoides suasus, Coryphaeschna luteipennis, Brechmorhoga praecox, Cannaphila insularis funerea, Erythrodiplax funerea y Erythrodiplax umbrata. Los sitios de colecta son: Atlixco, Cuautlancingo, Flor del Bosque y Santo Domingo Huehuetlán el Grande.

Cuadro 4.21 Especies del orden Odonata, suborden Zygoptera depositadas en la colección entomológica del Instituto de Ciencias de la BUAP.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calopterygidae</td>
<td>Hetaerina</td>
<td>cruentata heterodoxum occisa</td>
</tr>
<tr>
<td></td>
<td>Hetaerina</td>
<td>bila</td>
</tr>
<tr>
<td></td>
<td>Hetaerina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hetaerina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Archilestes</td>
<td>grandis</td>
</tr>
<tr>
<td></td>
<td>Hesperagrion</td>
<td>heterodoxum zoe</td>
</tr>
<tr>
<td></td>
<td>Paraphlebia</td>
<td></td>
</tr>
<tr>
<td>Megapodagrionida</td>
<td>Megaloprepus</td>
<td>caerulatus aberrans</td>
</tr>
<tr>
<td></td>
<td>Pseudostigma</td>
<td></td>
</tr>
<tr>
<td>Pseudostigmatida</td>
<td>Acanthagrion</td>
<td>sp.</td>
</tr>
<tr>
<td></td>
<td>Argia</td>
<td>plana</td>
</tr>
<tr>
<td></td>
<td>Argia</td>
<td>tarascana</td>
</tr>
<tr>
<td></td>
<td>Enallagma</td>
<td>sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>praevaram</td>
</tr>
</tbody>
</table>

Cuadro 4.22 Especies del orden Odonata, suborden Anisoptera, depositadas en la colección entomológica del Instituto de Ciencias de la BUAP.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gomphidae</td>
<td>Phyllogomphoides</td>
<td>suasus sp.</td>
</tr>
<tr>
<td></td>
<td>Phyllogomphoides</td>
<td></td>
</tr>
<tr>
<td>Aeshidae</td>
<td>Remartinia</td>
<td>luteipennis multicolor</td>
</tr>
<tr>
<td></td>
<td>Aeschna</td>
<td></td>
</tr>
<tr>
<td>Cordulegastridae</td>
<td>Cordulegaster</td>
<td>diadema</td>
</tr>
<tr>
<td>Libellulida</td>
<td>Brechmorhoga</td>
<td>praecox ssp. funerea</td>
</tr>
<tr>
<td></td>
<td>Cannaphila</td>
<td>insularis ssp. funerea</td>
</tr>
<tr>
<td></td>
<td>Erythrodiplax</td>
<td>funerea</td>
</tr>
<tr>
<td></td>
<td>Erythrodiplax</td>
<td>umbrata</td>
</tr>
<tr>
<td></td>
<td>Libellula</td>
<td>croceipennis</td>
</tr>
<tr>
<td></td>
<td>Libellula</td>
<td>herculae</td>
</tr>
<tr>
<td></td>
<td>Orthesmus</td>
<td>ferruginea</td>
</tr>
<tr>
<td></td>
<td>Pantala</td>
<td>flavescens</td>
</tr>
<tr>
<td></td>
<td>Penthemis</td>
<td>intensa</td>
</tr>
<tr>
<td></td>
<td>Pseudoleon</td>
<td>superbus</td>
</tr>
<tr>
<td></td>
<td>Sympetrum</td>
<td>illotum</td>
</tr>
<tr>
<td></td>
<td>Tramea</td>
<td>calverti</td>
</tr>
</tbody>
</table>

Fuente: Tapia-Rojas et al. 2005
mientras que las alas posteriores son membranosas (Sánchez 2003). El orden Hemiptera (Cuadro 4.23) está representado por dos subórdenes: Hydrocorizae y Geocorizae. La especie con el mayor número de ejemplares colectados es Dysdercus sp. y las especies con un sólo individuo son: Rasabus bigittus, Pselliopus cinctus, Triatoma palidipennis y Nezara viridula; estos ejemplares han sido colectados en Apatlán, Atencingo, Atlixco, Ciudad Serdán, Cuetzalan, Chie-tla, Izúcar de Matamoros, San Martín Texmelucan, San Miguel Xoxtla, San Pedro Chapulco, Santa Rita Tlahuapan, Santiago Yancuitlalpan, Santo Domingo Huehuetlán, Tecali de Herrera, Tehuacán, Teziutlán, Tlachicuca, Tlacotepec y Zacatlán.

Coleoptera. Los coleópteros son uno de los grupos de insectos más diversos en cuanto a forma, coloración, tamaño y hábitat, por lo que en todo el mundo muchos naturistas y científicos se han dedicado a coleccionarlos, identificarlos y estudiar sus hábitos y distribución durante los últimos 200 años. En México se identifica comúnmente a los ejemplares adultos con nombres derivados de la lengua náhuatl como: “mayates”, “pipioles” “temoles” y “jicotes” y se han citado cerca de 1 400 especies que pertenecen a cinco familias: Melolonthidae, Scarabaeidae, Trogidae, Passalidae y Lucanidae (Morón et al. 1997). Las alas anteriores son duras y se denominan élitros, formando una armadura que protege la parte posterior del tórax.

Cuadro 4.23 Hemipteros depositados en la colección entomológica del Instituto de Ciencias de la BUAP.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notonectidae</td>
<td>Notonecta</td>
<td>spp.</td>
</tr>
<tr>
<td></td>
<td>Anilus</td>
<td>cristatus</td>
</tr>
<tr>
<td></td>
<td>Zélus</td>
<td>spp.</td>
</tr>
<tr>
<td>Reduviidae</td>
<td>Apiomerus</td>
<td>spp.</td>
</tr>
<tr>
<td></td>
<td>Castolus</td>
<td>plagiaticollis</td>
</tr>
<tr>
<td></td>
<td>Pselliopus</td>
<td>cinctus</td>
</tr>
<tr>
<td></td>
<td>Pselliopus</td>
<td>palidipennis</td>
</tr>
<tr>
<td></td>
<td>Triatoma</td>
<td></td>
</tr>
<tr>
<td>Phymatidae</td>
<td>Phymata</td>
<td>spp.</td>
</tr>
<tr>
<td>Lygaeidae</td>
<td>Myodocha</td>
<td>sp.</td>
</tr>
<tr>
<td></td>
<td>Lygaeus</td>
<td>spp.</td>
</tr>
<tr>
<td>Largidae</td>
<td>Largus</td>
<td>sp.</td>
</tr>
<tr>
<td>Pyrrhocoridae</td>
<td>Dysdercus</td>
<td>spp.</td>
</tr>
<tr>
<td></td>
<td>Spartocera</td>
<td>fusca</td>
</tr>
<tr>
<td></td>
<td>Cepaneus</td>
<td>sp.</td>
</tr>
<tr>
<td>Coreidae</td>
<td>Leptoglossus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypselonotus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acanthocephala</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thasus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zicca</td>
<td></td>
</tr>
<tr>
<td>Rofhalidae</td>
<td>Harmostes</td>
<td>spp.</td>
</tr>
<tr>
<td>Scutelleridae</td>
<td>Tetyra</td>
<td>sp.</td>
</tr>
<tr>
<td></td>
<td>Edessa</td>
<td>reticulata</td>
</tr>
<tr>
<td></td>
<td>Euschistus</td>
<td>tristigmus</td>
</tr>
<tr>
<td>Pentatomidae</td>
<td>Murgantia</td>
<td>histrionica</td>
</tr>
<tr>
<td></td>
<td>Cuspicona</td>
<td>simplex</td>
</tr>
<tr>
<td></td>
<td>Nezara</td>
<td>viridula</td>
</tr>
</tbody>
</table>
al segundo par de alas y al abdomen. En la mayoría de las especies, las alas anteriores no se usan durante el vuelo, pero deben ser levantadas para poder usar las alas traseras. Tienen importancia económica como destructores del follaje de numerosos cultivos, como barrenadores de madera y de productos almacenados, como degradadores de materia vegetal y animal, y como depredadores de otras especies dañinas. (Morón y Terrón 1988). Se cuenta con 16 562 ejemplares del orden Coleoptera, que representan a 322 especies, 95 géneros, 13 subfamilias y 14 familias. La superfamilia mejor representada es Scarabaeoidea (Cuadro 4.24); aquí pertenece la familia Passalidae (Figura 4.22) representada por los géneros Pitichopus, Odontotaenius y Heliscus; la Scarabaeidae por Deltochilum, Sisyphus, Copris, Dichotomius, Ontherus, Onthophagus, Euvitellus, Aphodius, Agriinus, Onthotrupes, Ceratotrupes, Bolbelasmus, Eucanthus, Haltfferius, Ochodaeus, Parochodaeus; mientras que la Melolonthidae tiene representantes de los géneros Chnannthus, Diplotaxis, Phyllophaga (Figura 4.23), Polyphylla, Macrodeactylus, Isonychus, Hoplia, Parisolea, Chrysoa, Plusiotis, Callistethus, Anomala, Epectinaspis, Platycotilia, Ancognatha, Cyclocephala, Oriza, Xyloryctes, Strategus, Ligyurus, Dynastes, Cotinis, Euphoria y la familia Trogidae que está representada por el género Trox. De las especies que se han colectado, los géneros Phyllophaga, Diplotaxis y Anoma losa son las mejor representadas con 24, 12 y nueve especies respectivamente. Las colectas fueron realizadas en Amixtlan, Atlixco, Atlixco, Atotocoyan, Ciudad Serdán, Cueltalan, Chietla, Chignautla, Huitziltepec, Ixícar de Matamoros, Jolalpan, Jolotla, Miahuatlan, Naupan, Pahuatlán, San Francisco Altepeixi, San Felipe Teoaltalicano San Martín Texmelucan, San Miguel Xoxtla, San Pedro Chapulco, Santa Rita Tlahuapan, Santiago Yancuitlalpan, Santiago Zautla, Santo Domingo Huehuetlán, Tecali de Herrera, Tehuacán, Tepeojuma, Tezintla, Tlachichuca, Tlacotepec, Tochimilco, Tzicatlacoyan, Ticotepec de Juárez, Yaonahuac, Zacatlán y Zapotitlán.

• **Lepidoptera.** Son insectos con cuatro grandes alas insertadas en meso y metatórax provistas con esca mas a ambos lados y pigmentos, lo que les proporcionan un color llamativo, a veces tornasolado o iridiscente; poseen dos grandes ojos con dos o ningún ocelo; sus antenas son de diversas formas y tienen un aparato bucal complejo (chupador-succionador), con las mandíbulas reducidas y las maxilas transfor-

<table>
<thead>
<tr>
<th>Cuadro 4.24 Especies de Coleóptera Scarabaeoidea, depositados en la colección entomológica del Instituto de Ciencias de la BUAP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familia</td>
</tr>
<tr>
<td>Passalidae</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 4.24

<table>
<thead>
<tr>
<th>Familia</th>
<th>Subfamilia</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melolonthidae</td>
<td>Melolonthinae</td>
<td>Ochnaunanthus</td>
<td>discolor Burmeister</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diplotaxis</td>
<td>fossifrons Moser; jacala Vaurie; mediafusca Vaurie; turgidula Vaurie; truncatula Le conte; sinuana Vaurie; hebes Bates; pubera Bates; consequentia Bates; cribricollis Blanchard; brevicollis Le Conte; simplex Blanchard; tarsalis Schaeffer heteronycha Bates; obsoleta Blanchard, ravida Blanchard; rugithorax Saylor; vetula Horn; xante Bates; atra Moser; collaris Moser; godmani Bates; bucephala Bates; blanchardi Arrow; haagi Saylor; hidalgoana Saylor; hintoni Saylor; hoegei Bates; macgregori Morón; multipara Bates; pila Saylor; quadraphylla Saylor; schenklings Moser; anibus Saylor; certanca Saylor; dentex Bates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phyllophaga</td>
<td>nigripes Bates; mexicanus Burmeister</td>
</tr>
<tr>
<td></td>
<td>Rutelinae</td>
<td>Polyphylla</td>
<td>ocellatus Burmeister; piperitus Bates</td>
</tr>
<tr>
<td></td>
<td>Dynastinae</td>
<td>Macroductylus</td>
<td>squamifera Burmeister; subcostata Bates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoplia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parisolea</td>
<td>pallida Candéze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysina</td>
<td>macropus Francillon; peruviana Kirby; adelaida Hope; sallei Boucard; aurofoveata Morón; alticola Bates; orizabae Bates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plusotis</td>
<td>cupricollis Chevolat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Callistethus</td>
<td>inconstans Burmeister; sticticotopa Blanchard; denticollis Bates; chevolati Bates; castaniceps Bates; semicincta Bates; terroni Morón & Nogueira; donovani Stephens; undulata Melsheimer opacilobus Bates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anomala</td>
<td>humerals Bates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ancognatha</td>
<td>falsa Arrow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyclocephala</td>
<td>lunda Bates; fasciata Bates; jalapensis Casey; lunulata Burmeister; complanata Burmeister; melanocephala Fabricius; weidneri Endrödi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orzabus</td>
<td>clunalis Le Conte; batesi Prell; brevicollis Prell; rubricollis Prell; fairmairei Bates; vulanicus Morón, Tapia & Aragón</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xyloryctes</td>
<td>telephus Burmeister; ensifer Bates; furcatus Burmeister</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strategus</td>
<td>aloeus Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ligyrus</td>
<td>sallei Bates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynastes</td>
<td>hyllus Chevolat</td>
</tr>
<tr>
<td>Cetoniidae</td>
<td>Cetoniinae</td>
<td>Cotinis</td>
<td>mutabilis Gory & Percheron; basalis Gory & Percheron; vestita Gory & Percheron</td>
</tr>
<tr>
<td>Geotrupidae</td>
<td>Geotrupinae</td>
<td>Onthotrupes</td>
<td>herbeus Jekel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceratotrupes</td>
<td>bolivari Halffter; fronticomis Ericsson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolbelsanus</td>
<td>variabilis Howden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eucanthus</td>
<td>mexicanus Howden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halffterius</td>
<td>rufoclavatus Jekel</td>
</tr>
<tr>
<td></td>
<td>Ochodaeinae</td>
<td>Ochodaenus</td>
<td>howdeni Carlson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parochodaeus</td>
<td>howdeni Carlson</td>
</tr>
<tr>
<td>Trogidae</td>
<td>Troginae</td>
<td>Trox</td>
<td>spinulosus Robinson; plicatus Robinson</td>
</tr>
</tbody>
</table>

Fuente: Colección entomológica DAGAM-ICUAP. Las subfamilias Melolonthinae; Rutelinae y Dynastinae pertenecen a la familia Melolonthidae según la clasificación del libro “Atlas de los escarabajos de México” cuyos autores son: Miguel Ángel Morón, Brett C. Ratcliffe y Cuauhtemoc Deloya; fue editado por la Sociedad Mexicana de Entomología en el año 1997.
madas en una espiritrompa; sus patas son largas y delgadas. Las larvas son orugas ápidas que sólo se ocupan de alimentarse para soportar su posterior estadio de pupa y llegar a la fase de adulto (De Liñán 1998; Morón y Terrón 1988; Daccordi et al. 1989, Lobson 1977). Se tiene el registro de 1 029 mariposas (Cuadro 4.25) pertenecientes a la superfamilia cuatro, que está representada por cuatro familias: Papilionidae (Figura 4.24) con una subfamilia, cinco géneros, 10 especies; Pieridae con tres subfamilias, cinco géneros y cinco especies; Nymphalidae con cinco subfamilias, siete géneros y ocho especies y Lycaenidae

Cuadro 4.25 Lepidópteros diurnos depositados en la colección entomológica del Instituto de Ciencias de la BUAP. Fuente: Vélez y Tapia 2008.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Subfamilia</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papilionidae</td>
<td>Papiloinae</td>
<td>Paridas</td>
<td>montezuma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mimoides</td>
<td>Mimoides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Papilio</td>
<td>thymbraeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Papillo</td>
<td>ilus branchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Papillo</td>
<td>pharnaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Papillo</td>
<td>rhos autocles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pterourus</td>
<td>cresphontes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyrhostica</td>
<td>polyxenes asterius</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>multicaudata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>garamas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>garamas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>garamas</td>
</tr>
<tr>
<td>Pieridae</td>
<td>Dismorphini</td>
<td>Enantia</td>
<td>albania</td>
</tr>
<tr>
<td></td>
<td>Coliadiiae</td>
<td>Colias</td>
<td>eurytheme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phoebis</td>
<td>seniaene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eurena</td>
<td>proteperia</td>
</tr>
<tr>
<td></td>
<td>Pierinae</td>
<td>Catasticia</td>
<td>filia</td>
</tr>
<tr>
<td>Nymphalidae</td>
<td>Heliconiae</td>
<td>Dione</td>
<td>juno</td>
</tr>
<tr>
<td></td>
<td>Nymphalinae</td>
<td>Nymphalis</td>
<td>glycera</td>
</tr>
<tr>
<td></td>
<td>Charaxinae</td>
<td>Catonephele</td>
<td>antipa antipa</td>
</tr>
<tr>
<td></td>
<td>Satyrinae</td>
<td>Anaea</td>
<td>spp</td>
</tr>
<tr>
<td></td>
<td>Morphinae</td>
<td>Pareuptychia</td>
<td>pitryusa</td>
</tr>
<tr>
<td></td>
<td>Lycaeniae</td>
<td>Dircenna</td>
<td>ocrintheoe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morpho</td>
<td>spp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>acriles montezuma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eumaeus</td>
<td>miniñas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psedolycaena</td>
<td>damo</td>
</tr>
</tbody>
</table>
con dos subfamilias, dos géneros y dos especies. Los sitios de colecta son en su mayoría zonas agrícolas ubicadas en Amatlán, Atlacoxco, Atotocoyan, Cuetzalan, Mazatepec, Xicotepec de Juárez y Zoquiapan.

Conclusión
Conocer con exactitud el número de especies de insectos en el estado de Puebla requiere de apoyos económicos y proyectos que permitan la incorporación de personas especializadas en la clase Insecta. De esta forma se podrán conocer los patrones de diversidad a nivel regional que son de suma importancia para incorporarlos a los registros que se tienen a nivel nacional, ya que representan un acervo científico invaluables para las futuras generaciones.

Peces
Anabella Handal Silva, Adolfo Pérez Vergas, Carolina Mórón Raya

Introducción
La variabilidad fisiorográfica y el relativo aislamiento de la mesa central da como resultado que la ictiofauna del estado de Puebla tenga su origen en las familias neárticas (Cyprinidae, Catostomidae e Ictaluridae) y neotropicales (Cichlidae, Poeciliidae y Characidae) así como a la adaptación de varias especies de origen marino, pertenecientes a la familia Atherinopsidea del género *Chirostoma*, que habitan los lagos-cráter de la región Oriental (De Buen 1945; Álvarez del Villar 1978; Miller 1986; Alcocer et al. 1998).

Los primeros estudios sobre los peces del estado fueron de carácter taxonómico, realizados por Jordan y Snyder (1900) y Meek en (1902, 1904). Entre 1940 y 1980 se publicaron importantes contribuciones como De Buen (1941, 1942, 1946 y 1947 a, b, c), Hubbs y Turner (1963), Miller (1986), Miller y Smith (1986), Espinoza et al. (1993) que describen algunas especies y su distribución en las cuencas de los Balsas y Papaloapan y de los ríos Pánuco, Tecolutla, Mixteco, Coatzacoalcos, Cazones y Nautla. Álvarez (1963) describe en la cuenca del río Balsas especies de las familias Cyprinidae, Goodeidae y Atherinopsidea. Posteriormente, Álvarez (1972) menciona que en la región del Balsas la ictiofauna es neotropical por la presencia de una especie de cada uno de los géneros *Astyanax*, *Poecilia* y *Cichlasoma*.

Miller en 1986 hace referencia a la presencia de 15 especies de agua dulce nativas de la cuenca del río Balsas. Ramírez-Enciso (1991) reporta *Ctenopharyngodon idella*, *Heterandria bimaculata*, *Poecilia reticulata* y *Tilapia rendalli* como nuevos registros para la cuenca. Según Soto Galera et al. (1998), las colecciones de peces dulceacuícolas mexicanas de la Escuela Nacional de Ciencias Biológicas y el Centro de Investigaciones Biológicas de la Universidad Autónoma del Estado de Morelos reportan 37 especies y 26 géneros incluidos en 10 familias, pertenecientes a la ictiofauna Balseana y menciona que algunas secciones de los ríos Atoyac y Mixteco de la zona oriental de la región del Balsas se encuentran poco representadas en las colecciones.

El conocimiento de la diversidad de peces en el estado de Puebla se encuentra disperso y es limitado. En la mayoría de los trabajos se menciona parte de la ictiofauna relacionada con la cuenca del Balsas y se conoce poco en relación a las regiones del estado que corresponden a las cuencas del Pánuco, Papaloapan y Tuxpan-Nautla. Por lo anterior, en este trabajo se plantea un acercamiento al conocimiento actual de la ictiofauna y su distribución en la entidad.

Estado del conocimiento de los peces
La fauna dulceacuícola del estado de Puebla se localiza en cuatro regiones hidrológicas: Río Balsas, que está subdividida en 10 cuencas, de las cuales, cuatro se encuentran parcialmente incluidas en territorio poblano y que suman en conjunto el 59.14 % de la superficie estatal que desemboca en el Pacífico y el 35 % de las especies de peces son endémicas a la cuenca; región Tuxpan-Nautla que en la entidad está representada por cuatro cuencas y ocupa el 20 % del estado; Papaloapan, que comprende dos cuencas que constituyen aproximadamente el 16.05 % de la superficie total estatal y posee el 22 % de endemismo ñctico, Río Pánuco, que ocupa unas decenas de km²; el 30 % de las especies de peces son endémicas a la cuenca. En la región existe además una presa, cinco manantiales de aguas termales y cuatro de aguas minerales, trece lagunas y dos presas hidroeléctricas (Enciclopedia municipios de México, Puebla 2005, INEGI 2000, 2009).
Como resultado del análisis bibliográfico e ictiológico en distintas colecciones, se encontró que para el estado se tienen registradas 47 especies de peces pertenecientes a 10 familias, 13 de las cuales son endémicas y se distribuyen de la siguiente manera: siete en la cuenca del Balsas; dos en la del Papaloapan y las cuatro restantes en los lagos cráter. Existen 14 especies nativas y 20 introducidas en la región para fines de acuicultura o fomento pesquero, 13 son especies de otras regiones de México, de las restantes siete tres son asiáticas, tres africanas y una de Norteamérica, las cuales se enlistan en el Cuadro 4.26 (Miller 1986, Espinosa et al. 1993, Miller et al. 2005).

En la Región del Balsas los peces neotropicales están representados por un ciclo endémico llamado *Cichlasoma istlanus*, y algunas especies de poecílidos. Entre las especies neárticas invasoras de esta provincia están *lloido whitei*, *Istlanus balsanus* y *Notropis boucardi* (Vega 2003). Mejía (2001) reporta para la cuenca del Balsas a las especies *Cichlasoma nigrofasciatum*,

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especies</th>
<th>Origen</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprinidae</td>
<td>Notropis boucardi (carpita del Balsas)</td>
<td>Endémica</td>
<td>Cuenca del Balsas y ríos Atoyac, Nexapa y Mixteco</td>
</tr>
<tr>
<td></td>
<td>Azyctecula salaei (carpita azteca)</td>
<td>Nativa</td>
<td>Río Pánico y cuenca del Balsas</td>
</tr>
<tr>
<td></td>
<td>Notropis imelae</td>
<td>Nativa</td>
<td>Ríos Verde y Atoyac</td>
</tr>
<tr>
<td></td>
<td>Notropis ipani (carpa Veracruzana)</td>
<td>Nativa</td>
<td>Río Pánico</td>
</tr>
<tr>
<td></td>
<td>Cyprinus carpio (carpa común)</td>
<td>Introducida</td>
<td>Distribuidos en la mayoría de los Municipios del Estado (acuicultura)</td>
</tr>
<tr>
<td></td>
<td>Carassius auratus (carpa dorada)</td>
<td>Introducida</td>
<td>Especie de ornato</td>
</tr>
<tr>
<td></td>
<td>Ctenopharyngodon idella (carpa hervívora)</td>
<td>Introducida</td>
<td>Acuicultura</td>
</tr>
<tr>
<td>Characidae</td>
<td>Astyanax fasciatus (pepesca)</td>
<td>Nativa</td>
<td>Ríos Papaloapan y Balsas</td>
</tr>
<tr>
<td></td>
<td>Astyanax fasciatus mexicanus (sardina mexicana)</td>
<td>Nativa</td>
<td>Ríos Balsas, Papaloapan y Pánico</td>
</tr>
<tr>
<td>Ictaluridae</td>
<td>Ictalurus balsanus (bagre del Balsas)</td>
<td>Endémica</td>
<td>Cuenca del Balsas, ríos y arroyos de Puebla</td>
</tr>
<tr>
<td></td>
<td>Ictalurus punctatus (bagre de canal)</td>
<td>Introducida</td>
<td>*Ríos Pánico y Cazones Mixteca: Acatlan de Osorio, Jojolpan, Huachinango (acuicultura)</td>
</tr>
<tr>
<td>Salmonidae</td>
<td>Oncorhynchus mykiss (trucha arcoiris)</td>
<td>Introducida</td>
<td>Puebla, Atlíxco, Chietla, Epatlán, Calpán, Santa Rita, Tlahuapan, Jojolpan, Acatlan de Osorio, Huachinango (acuicultura y pesca deportiva)</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>Icterus pichardi (bobo)</td>
<td>Introducida</td>
<td>* Rio Nautla</td>
</tr>
<tr>
<td>Goodeidae</td>
<td>Ilyodon whitei (Mexcalpique cola partida)</td>
<td>Endémica</td>
<td>Cuenca del Balsas</td>
</tr>
<tr>
<td></td>
<td>Girardinichthys multiradiatus (Mexcalpique de Zempoala)</td>
<td>Nativa</td>
<td>Cuenca del Balsas</td>
</tr>
</tbody>
</table>
Continúa cuadro 4.26

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especies</th>
<th>Origen</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poeciliidae</td>
<td>Poeciliopsis balsanus (guatopote del Balsas)</td>
<td>Endémica</td>
<td>Río Balsas</td>
</tr>
<tr>
<td></td>
<td>Heterandria bimaculata (guapote manchado)</td>
<td>Introducida</td>
<td>*Río Nautia, cuenca del Balsas, río Atoyac, Papaloapan</td>
</tr>
<tr>
<td></td>
<td>Heterandria jonesi (guatopote)</td>
<td>Nativa</td>
<td>Cuenca del Balsas, ríos Pánuco, Nautia, Atoyac Papaloapan, lago de Aljoja</td>
</tr>
<tr>
<td></td>
<td>Poecilia maylandi (topote del Balsas)</td>
<td>Endémica</td>
<td>Cuenca del Balsas</td>
</tr>
<tr>
<td></td>
<td>Poecilia sphenops (topote mexicano)</td>
<td>Nativa</td>
<td>Mayoría de ríos que pasan por el estado</td>
</tr>
<tr>
<td></td>
<td>Poecilia reticulata (guppi)</td>
<td>Introducida</td>
<td>*Cuenca del Balsas y Laguna de Almoloya</td>
</tr>
<tr>
<td></td>
<td>Poeciliopsis infans (guatopote del Lerma)</td>
<td>Introducida</td>
<td>*Río Balsas</td>
</tr>
<tr>
<td></td>
<td>Poeciliopsis gracilis (guatopote jarocho)</td>
<td>Introducida</td>
<td>*Río Balsas, Pánuco y Papaloapan</td>
</tr>
<tr>
<td></td>
<td>Xiphophorus helleri (cola de espada)</td>
<td>Introducida</td>
<td>*Cuenca de los ríos Nautia y Balsas</td>
</tr>
<tr>
<td></td>
<td>Xiphophorus evelynae (espada del Necaxa)</td>
<td>Nativa</td>
<td>Río Necaxa y cuenca del Balsas</td>
</tr>
<tr>
<td></td>
<td>Xiphophorus maculatus (platy sureño)</td>
<td>Introducida</td>
<td>*Río Nautia, cuenca del río Pánuco y Occidente de Puebla</td>
</tr>
<tr>
<td></td>
<td>Xiphophorus andersi (espada del Atoyac)</td>
<td>Nativa</td>
<td>Río Atoyac y tributarios</td>
</tr>
<tr>
<td></td>
<td>Gambusia regani (guayocón del fortón)</td>
<td>Nativa</td>
<td>Ríos Pánuco y Nautia</td>
</tr>
<tr>
<td></td>
<td>Xiphophorus variatus (platy de valles)</td>
<td>Introducida</td>
<td>*Ríos Soto, la Marina y Pánuco</td>
</tr>
<tr>
<td></td>
<td>Poecilia butleri</td>
<td>Nativa</td>
<td>Cuenca del Balsas</td>
</tr>
<tr>
<td>Atherinopsisidae</td>
<td>Poblana squamata (charal de Quechulacl)</td>
<td>Endémica</td>
<td>Lago de Quechulac</td>
</tr>
<tr>
<td></td>
<td>Poblana letholepis (charal de la Preciosa)</td>
<td>Endémica</td>
<td>Lago Las Minas (La Preciosa)</td>
</tr>
<tr>
<td></td>
<td>Poblana alchichica De Buen (charal de Alchichica)</td>
<td>Endémica</td>
<td>Lago de Alchichica</td>
</tr>
<tr>
<td></td>
<td>Poblana ferdebueni (charal de Almoloya)</td>
<td>Endémica</td>
<td>Lago Almoloya</td>
</tr>
<tr>
<td></td>
<td>Chirostoma grandocule (charal del lago)</td>
<td>Introducida</td>
<td>*Reservorios de Puebla</td>
</tr>
<tr>
<td></td>
<td>Chirostoma jordani</td>
<td>Introducida</td>
<td>*Ríos Cazones Tecolutla y Pánuco</td>
</tr>
<tr>
<td></td>
<td>Chirostoma estor (pescado blanco)</td>
<td>Introducida</td>
<td>*Reservorios de Puebla</td>
</tr>
<tr>
<td></td>
<td>Atherinella sallei (plateadito del Papaloapan)</td>
<td>Nativa</td>
<td>Ríos Papaloapan y Coatzacoalcos</td>
</tr>
<tr>
<td></td>
<td>Atherinella balsana (plateadito del Balsas)</td>
<td>Endémica</td>
<td>Cuenca del Balsas y Nexapa</td>
</tr>
<tr>
<td>Centrarchidae</td>
<td>Micropterus salmoides (lobina negra)</td>
<td>Introducida</td>
<td>*Reservorios de Puebla (pesca)</td>
</tr>
</tbody>
</table>
Oreochromis mossambicus, (Cichlidae), Poecilia reticulata, Poeciliopsis gracilis y Xiphophorus helleri (Poeciliidae), que fueron introducidas en la cuenca del Balsas con fines de acuacultura (Contreras-Balderas et al. 1984, Contreras-MacBeath et al. 1998) y que representan actualmente poblaciones pequeñas por su número y muy localizadas, sin embargo se convierten en un registro importante por su rango de invasión en la cuenca. En relación a la abundancia de especies, en la cuenca del Balsas se reportan las siguientes: Lile gracilis, Astyanax fasciatus, Poecilia butleri, Poecilia sphenops y Poeciliopsis fasciata, en tanto que las especies Astyanax fasciatus, Poecilia sphenops y Cichlasoma ictlanum presentan un patrón geográfico más amplio dentro de la zona (Mejía 2001).

Principales amenazas
Una de las principales amenazas para la ictiofauna en el estado de Puebla es la contaminación de ríos y lagos y de manera particular del río Atoyac y Alseseca, que drenan un equivalente al 49 % de la superficie del estado (INEGI 2009, Saldaña 2006). A consecuencia de la contaminación, algunas especies de la cuenca del Balsas se encuentran amenazadas y en peligro de extinción: Ilyodon withei, Cichlasoma ictlanum, Poeciliopsis balsas, Ictalurus balsanus, e Hybopsis boucardi que fueron descritas en lugares donde en la actualidad es imposible encontrar peces, lo que ilustra el grado de deterioro del agua en la región. Es alarmante la forma en que ha disminuido su pesquería, se encuentran cada vez más reducidas las capturas y de menor talla los ejemplares como consecuencia de la contaminación del medio (Luna Figueroa 2006, De la Vega Salazar 2003).

Otra de las principales amenazas es la introducción de especies exóticas como Cyprinus carpio, Carassius auratus, Ctenopharyngodon idella, Ictalurus punctatus, Poecilia reticulata, Chirostoma estor, Oncorhynchus mykiss, y Cichlasoma nigrofasciantum, que han sido distribuidas en la mayoría de los municipios del estado como especies de ornato, acuacultura o como pesquero, entre ellos: la Mixteca, el Eje Neovolcánico, la Sierra Norte, la Sierra Negra, la Sierra Nororiental, Izúcar de Matamoros, Chignahuapan, así como en la cuenca Oriental y en los lagos-cráter, donde se han introducido carpas japonesas como Cyprinus carpio y Carassius auratus en Aljojuca y Tecuitlapa. Asimismo, en Quechulac y la Preciosa se desarrollan cultivos de trucha arcoiris (Oncorhynchus mykiss) que constituyen un peligro para las especies endémicas de los lagos-cráter (Poblana alchichica, P. letholepis, P. squamata). Otras amenazas como resultado de las actividades humanas es la tala de árboles, el sobrepastoreo y la sobreexplotación agrícola del suelo, lo que contribuye a acelerar los procesos erosivos que limitan la captación del agua y por consiguiente la recarga de acuíferos, de manera particular, en la cuenca Oriental; esto pone en riesgo la existencia de la biota acuática en general incluyendo la endémica (Espinosa et al. 2004, Alcocer et al. 2005).

Continúa cuadro 4.26

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especies</th>
<th>Origen</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cichlidae</td>
<td>Cichlasoma ictlanum (mojarra del Balsas)</td>
<td>Endémica</td>
<td>Cuenca del Balsas y río Papagayo</td>
</tr>
<tr>
<td></td>
<td>Vieja fenestrata (mojarra de la lana)</td>
<td>Nativa</td>
<td>Río Papaloapan</td>
</tr>
<tr>
<td></td>
<td>Cichlasoma nigrofasciantum</td>
<td>Introducida</td>
<td>Acuacultura</td>
</tr>
<tr>
<td></td>
<td>Oreochromis mossambicus</td>
<td>Introducida</td>
<td>Acuacultura</td>
</tr>
<tr>
<td></td>
<td>Oreochromis sp.(tilapia)</td>
<td>Introducida</td>
<td>Mixteca: Acatlan de Osorio, Jojolpan; Chiautla (acuacultura)</td>
</tr>
<tr>
<td></td>
<td>Cichlasoma bulleri (mojarra de sarabia)</td>
<td>Endémica</td>
<td>Río Papaloapan</td>
</tr>
<tr>
<td></td>
<td>Cichlasoma nebuliferum</td>
<td>Endémica</td>
<td>Río Papaloapan</td>
</tr>
</tbody>
</table>

* Especies transplantadas en el mismo país.
Las especies introducidas son 20 y representan el 43.1 % del total de las reportadas para la entidad (ver cuadro 4.26), situación que constituye una amenaza para las comunidades acuáticas nativas porque alteran las condiciones del hábitat, modifican la estructura de las comunidades en los diferentes niveles tróficos e introducen enfermedades que pueden dar por resultado la eliminación de especies endémicas de importancia económica y ecológica (Alcocer et al. 2005, Contreras-Balderas y Escalante 1984, Torres-Orozco 1991).

Conclusión

La introducción de especies exóticas y la degradación y destrucción del hábitat por la contaminación son los principales factores de riesgo para las especies nativas de peces del Estado. En relación a la introducción de especies exóticas, se debe realizar la siembra, tomando en cuenta las características ecológicas de la especie que se va a introducir y el lugar, para que no compita con las especies existentes en los cuerpos de agua y poder evitar su desplazamiento o desaparición. En el caso de las especies que ya se introdujeron, se recomienda planificar, regular y monitorearlas, así como la repoblación con especies nativas y establecer vedas de captura, tallas de captura y métodos de pesca adecuados. Es fundamental controlar y regular las descargas municipales e industriales para disminuir la contaminación y así evitar el deterioro en la calidad del agua. Se debe controlar la erosión hídrica del suelo mediante el aprovechamiento sustentable de bosques y selvas. También es indispensable la formación de recursos humanos de calidad, que generen información básica y aplicada para mantener y recuperar los ecosistemas acuáticos de la entidad (SAGARPA 2001, American Fisheries Society 2007).

Anfibios y reptiles

Guadalupe Gutiérrez Mayén, Luis Canseco Márquez,
Uri Omar García Vázquez y Carlos Alberto Hernández Jiménez

Introducción

Puebla presenta una accidentada topografía, conteniendo una amplia variedad de tipos de vegetación y pisos altitudinales, debido a que en el estado se encuentran cuatro regiones fisiográficas (Ver capítulo 1. Medio Físico).

Con todas estas contribuciones y a partir de trabajo de campo por parte de los autores del capítulo, así como de revisión de literatura y material depositado en colecciones científicas (nacionales y extranjeras), se logró obtener el listado completo para el estado, que ocupa actualmente el cuarto lugar en diversidad de anfibios y reptiles en el país.

Descripción de los anfibios

Los anfibios comúnmente son conocidos como ranas y sapos (Anuros), aholetes y salmandras (Caudados), además de las cecilias (Gymnophiona). Son ectotermos; es decir que su temperatura corporal depende de la temperatura ambiental. La característica principal de este grupo es poseer la piel lisa y vascularizada, que resulta ser altamente permeable al agua, por lo que no la toman directamente de los cuerpos de agua sino absorbiéndola del suelo húmedo a través de la piel. Otra función importante de la piel es la respiración, facilitando el intercambio de gases
Cuadro 4.27 Composición herpetofaunística del estado de Puebla.

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Familias</th>
<th>Géneros</th>
<th>Especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranas y sapos</td>
<td>9</td>
<td>22</td>
<td>60</td>
</tr>
<tr>
<td>Salamandras</td>
<td>3</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Lagartijas</td>
<td>14</td>
<td>25</td>
<td>62</td>
</tr>
<tr>
<td>Serpientes</td>
<td>6</td>
<td>48</td>
<td>99</td>
</tr>
<tr>
<td>Tortugas</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>105</td>
<td>247</td>
</tr>
</tbody>
</table>

debido a un gran número de glándulas mucosas que se distribuyen en todo el cuerpo y que se encargan de lubricar y mantener húmeda la piel.

La fecundación en salamandras y cecilias es interna, mientras que en anuros es externa. La mayoría de las ranas, sapos y salamandras se desarrollan por medio de huevos (oviparidad) que son depositados por las hembras en sitios con condiciones húmedas. El desarrollo de los huevos en algunas especies de anuros permite la aparición de una larva acuática que es conocida como renacuajo, la cual pasa por una metamorfosis hasta convertirse en una rana pequeña que crecerá hasta llegar a ser un adulto. En este tipo de reproducción se dice que el desarrollo es indirecto. En otros casos las hembras depositan sus huevos debajo de troncos con suficiente humedad; posteriormente de los huevos sale una pequeña ranita, la cual no pasa por una etapa larvaria, en este caso se dice que el desarrollo es directo.

Descripción de los reptiles

Al grupo de los reptiles pertenecen las tortugas (Testudines), cocodrilos (Crocodylia), lagartijas y serpientes (Squamata) y el tuatara (Rhynchocephalia). Al igual que los anfibios, también son ectotermos. Tienen la piel seca cubierta por escamas que protegen al cuerpo de la desecación. Su respiración es por medio de pulmones y sólo las tortugas acuáticas lo hacen además a través del epitelio de la faringe.

El corazón es tricavitario con excepción de los cocodrilos, donde es tetracavitario. Las tortugas y cocodrilos se reproducen por huevos (ovíparos) que son puestos en la tierra. En lagartijas y serpientes, algunas especies también ponen sus huevos sobre la tierra y otras dan nacimiento a crías vivas (vivíparos).

Riqueza y distribución de la herpetofauna en Puebla

La herpetofauna de Puebla se encuentra conformada por 247 especies (82 anfibios y 165 reptiles) (Cuadro 4.27), repartidas en 35 familias y 105 géneros. El grupo mejor representado en anfibios es el de los anuros (ranas y sapos), seguido de las salamandras. Con relación a los reptiles, el grupo más diverso son las serpientes, seguido de las lagartijas, el grupo de las tortugas es el que tiene el menor número de especies (Cuadro 4.28 en DVD anexo).

La distribución por provincias fisiográficas mostró que la Sierra Madre del Sur es la de mayor riqueza específica con 166 especies (67.2 %), seguida de la Faja Volcánica Transmexicana con 123 (49.8 %), después por la Sierra Madre Oriental con 79 (31.2 %) y finalmente por la Llanura Costera del Golfo Norte con sólo 38 especies (15.4 %) (Figura 4.25).

Del total de especies presentes, 145 (58.7 %) son endémicas a México (53 anfibios y 92 reptiles), mientras que 10 (4 %) son endémicas a Puebla (cinco anfibios y cinco reptiles).

En cuanto al estatus de conservación de los anfibios y reptiles, la NOM-059-SEMARNAT-2001 (DOF, 2002) incluye a 32 especies de anfibios (12.9 %, 21 sujetas
a protección especial, nueve amenazadas y dos en peligro de extinción) y 77 reptiles (31.1%, 56 sujetas a protección especial y 21 amenazadas), mientras que dentro de la lista roja publicada por la International Union for Conservation of Nature (IUCN) se encuentran 32 especies de anfibios (12.9%, siete en peligro crítico, 13 en peligro de extinción y 12 vulnerables) y 11 de reptiles (4.4%, una en peligro crítico, tres en peligro de extinción y siete vulnerables).

La Convención Internacional de especies amenazadas de Fauna y Flora Silvestre (CITES) incluye a cuatro especies de reptiles: Iguana iguana, Heloderma horridum, Boa constrictor y Micrurus diastema, que representan el 4.4% (Cuadro 4.28 en DVD anexo).

Importancia de la herpetofauna

La importancia de los anfibios y reptiles la podemos ubicar en tres aspectos: ecológico, económico y cultural. La primera se refiere a la función que desempeña la herpetofauna como parte de las comunidades y de los ecosistemas; en este sentido, los anfibios y reptiles forman parte de las cadenas tróficas en sus diferentes niveles, desde el primero que corresponde a los consumidores primarios, donde encontramos organismos herbívoros como las iguanas, pasando por los niveles intermedios que corresponden a los consumidores de segundo y tercer orden en los cuales se encuentran la mayoría de los anfibios y reptiles de talla pequeña que se alimentan principalmente de insectos y otros invertebrados pequeños, hasta los niveles superiores...
que corresponden a los consumidores de cuarto orden donde se ubican reptiles como el escorpín (*Heloderma*) y boas, que se alimentan de otros reptiles, aves y mamíferos. Por lo anterior, los anfibios y reptiles son elementos básicos de los ecosistemas, además sus poblaciones, que en muchos casos son numerosas, funcionan como controladoras de plagas (ej. insectos y roedores) que pueden llegar a afectar actividades como la agricultura y la ganadería o incluso afectar directamente la salud del hombre actuando como vectores de enfermedades. La importancia económica de la herpetofauna se basa en los usos que les dan las comunidades indígenas y rurales, siendo los principales el garrobo o iguana negra (*Ctenosaura pectinata*) como alimento en algunas regiones del estado como la mixteca, o el ajolote (*Ambystoma mexicanum*) en la Sierra Norte y Centro (Cuenca de Oriental). Otros organismos tienen gran demanda en la elaboración de artesanías (monederos), como los sapos (monederos), víboras de cascabel, iguana negra y boas (cinturones, botas, chamarras, entre otros) en la región de la Mixteca (Rivera, 2009). Uno de los usos que ha crecido rápidamente en los últimos años, principalmente en ciudades como Puebla, es la compra de anfibios y reptiles como mascotas; en este caso los organismos con más demanda son anfibios como *Agalychnis dacnicolor*, *A. cali* y reptiles como la iguana verde (*Iguana iguana*), las diferentes especies de falsos camaleones (*Phrynosoma*), las lagartijas conocidas como escorpiones (*Barisia*, *Gerrhonotus*, *Abronia*), las tortugas japonesa (*Trachemys venusta*) y casquito (*Kinosternon integrum*), serpientes como boas (*Boa constrictor*), la falsa coralillo (*Lampropeltis triangulum*) y en general todas las especies de cascabeles (*Crotalus*). La importancia de los anfibios y reptiles radica en su uso para fines medicinales o en rituales mágico-religiosos que forman parte de la riqueza cultural heredada de las culturas preco-lombinas, en las que estos organismos tenían un significado religioso que lamentablemente se transformó en falsas creencias con la llegada de las culturas europeas y que al paso del tiempo se han convertido en mitos, ocasionando que desde hace siglos los anfibios y reptiles sean los componentes de la fauna silvestre más perseguidos y sacrificados sólo por su aspecto, considerándolos en general como organismos venenosos que representan un riesgo para el ganado y el hombre mismo. De igual forma, algunas especies son perseguidas para obtener ciertas partes de su cuerpo, como en el caso de las serpientes de cascabel, de las que se cree que los colmillos y el cascabel son de buena suerte, ocasionando una gran mortalidad para obtener estas partes. Otros mitos que contribuyen en gran medida a la disminución de las poblaciones de estos organismos es que se les atribuye propiedades curativas a muchas especies, como el caso del ajolote (*Ambystoma mexicanum*) con el cual se elaboran jarabes para tratar enfermedades respiratorias, los falsos camaleones (*Phrynosoma*) para curar la diabetes o en general las serpientes de cascabel (*Crotalus*) de las que se utiliza la piel y carne seca para curar el cáncer. Cabe destacar que en todos los casos se trata de falsas creencias.

Conclusión

A pesar del trabajo de campo que se ha realizado en los últimos años en diversas regiones del estado (Figura 4.26), hecho que lo ha colocado entre los cinco estados más diversos en cuanto anfibios y reptiles, permanecen sin ser exploradas importantes regiones; tal es el caso de la Sierra Negra al Sureste del estado, en donde recientemente se obtuvieron registros nuevos, además de algunas regiones de la Sierra Norte. Adicionalmente, nuevas especies para el estado están en proceso de descripción, por lo que el inventario de la herpetofauna se incrementará en un futuro próximo.

Considerando, por una parte, la importancia ecológica, económica y cultural de los anfibios y reptiles, y por otra, la gran mortalidad que los afecta ocasionada por los mitos, la sobreexplotación derivada de sus diferentes usos, la creciente urbanización que conlleva la desaparición de los hábitats y la transformación de grandes extensiones de vegetación natural para la agricultura y la ganadería, es grave que un gran número de especies se encuentren en una situación crítica, por lo que es necesario y urgente el desarrollo de una cultura ecológica que muestre la importancia de estos organismos como componentes fundamentales de los ecosistemas, de los que el hombre también forma parte.
Figura 4.26.1 Fotografías de algunas especies de anfibios y reptiles del estado de Puebla.
Pseudoeurycea gigantea. Hueyapan, Puebla.
(Foto: Yoazim Melgarejo).

Pseudoeurycea mixteca. Santa María la Alta, Puebla
(Foto: Luis Canseco Márquez).

Abronia graminea. Zoquitlán, Puebla
(Foto: Luis Canseco Márquez).

Celestus legnotus. Xucayucan, Puebla
(Foto: Luis Canseco Márquez).

Coleonyx elegans. Huehuetlán El Chico, Puebla
(Foto: Luis Canseco Márquez).

Phrynosoma braconnieri. Carretera Nopala, Tehuacán, Puebla
(Foto: Luis Canseco Márquez).

Sceloporus mucronatus. Piedras Encimadas, Zacatlán, Puebla
(Foto: Luis Canseco Márquez).

Anolis naufragus. San Pablo Zoquitlán, Puebla
(Foto: Luis Canseco Márquez).

Lepidophyma tuxtlae. Tlacotepec de Díaz, Puebla
(Foto: Luis Canseco Márquez).

Xenosaurus rectocollaris. Zapotitlán salinas, Puebla
(Foto: Luis Canseco Márquez).

Coluber mentovarius. Norte de Acatlán, Puebla
(Foto: Luis Canseco Márquez).

Coniophanes imperialis. Colonia Morelos, Tenampulco, Puebla
(Foto: Luis Canseco Márquez).

Figura 4.26.2 Fotografías de algunas especies de anfibios y reptiles del estado de Puebla.
La biodiversidad en Puebla • Estudio de Estado

Leptodeira cussiliris. Tlatlauquitepec, Puebla (Foto: Luis Canseco Márquez).

Rhadinaea quinquelineata. Pico del Águila, Hueyapan, Puebla (Foto: Luis Canseco Márquez).

Thamnophis sumichrasti. Cascada La Gloria, Apulco, Puebla (Foto: Luis Canseco Márquez).

Leptodeira cussiliris. Tlatlauquitepec, Puebla (Foto: Luis Canseco Márquez).

Rhadinaea quinquelineata. Pico del Águila, Hueyapan, Puebla (Foto: Luis Canseco Márquez).

Thamnophis sumichrasti. Cascada La Gloria, Apulco, Puebla (Foto: Luis Canseco Márquez).

Sibon dimidiatus. Tlacotepec de Díaz, Puebla (Foto: Luis Canseco Márquez).

Tropidodipsas sartorii. Paso Real, Hueyapan, Puebla (Foto: Luis Canseco Márquez).

Atropoides nummifer. San Andrés Tziculán, Cuetzalan, Puebla (Foto: Luis Canseco Márquez).

Crotalus intermedius. Santiago Alseseca, Tecamachalco, Puebla (Foto: Luis Canseco Márquez).

Crotalus scutulatus salvini. Tepeyahualco, Puebla (Foto: Luis Canseco Márquez).

Crotalus triseriatus. Tlatlauquitepec, Puebla (Foto: Luis Canseco Márquez).

Crotalus intermedius. Santiago Alseseca, Tecamachalco, Puebla (Foto: Luis Canseco Márquez).

Crotalus scutulatus salvini. Tepeyahualco, Puebla (Foto: Luis Canseco Márquez).

Crotalus triseriatus. Tlatlauquitepec, Puebla (Foto: Luis Canseco Márquez).

Ophryacus melanurus. Cacaloapan, Puebla (Foto: Luis Canseco Márquez).

Ophryacus undulatus. Zoquitlán, Puebla (Foto: Luis Canseco Márquez).

Kinosternon herreai. Cuetzalan, Puebla (Foto: Luis Canseco Márquez).

Figura 4.26.3 Fotografías de algunas especies de anfibios y reptiles del estado de Puebla.
Aves en Puebla
Francisco Javier Jiménez Moreno, Ma. Concepción López Tellez, Roxana Mendoza Cuamatzi, Marco Antonio Pineda Maldonado y Octavio Rafael Rojas Soto

Introducción

Diversidad y riqueza de las aves
Las 595 especies de aves están representadas por 19 órdenes, 67 familias y 309 géneros e incluye grupos con una clasificación incierta como son los casos de Pachyrampus major y Titra semifasciata. Considerando las estimaciones de Escalante et al. (1998) la avifauna del estado de Puebla representa el 55 % del total de la riqueza para México; este elevado porcentaje podría ser el resultado de la ubicación geográfica de la entidad, la cual está en medio de dos regiones biogeográficas: la Neártica y la Neotropical (Challenger 1998). Esta riqueza de especies además se ve favorecida por la existencia en la entidad de una compleja topografía formada por la conjunción de elementos fisiográficos tan importantes como la Sierra Madre Oriental al norte, el Eje Neovolcánico transversal al centro, y la Cuenca del Rio Balsas al sur, a su vez permiten la existencia de un gradiente climático y vegetacional que favorece el mantenimiento de diversas comunidades de aves. En las Figuras 4.27 y 4.28 se presentan dos especies representativas de la riqueza de la avifauna Poblana.

Con relación a la estacionalidad, se encontraron 364 aves residentes, 130 migratorias de invierno, 13 migratorias de verano, 25 bimodales (especies en las que la mitad de su población es residente y la otra mitad migratoria), 45 transitorias, seis accidentales, cuatro extirpadas, siete introducidas o exóticas (no consideradas en el listado final) y una dudosa (Figura 4.29).

De las 67 familias presentes en el estado, las mejor representadas con base en el número de especies son la Parulidae y la Tyrannidae (Figura 4.30).
Figura 4.28 *Buteo albicaudatus*. (Foto: Marco Antonio Pineda)

Figura 4.29 Riqueza de especies con base en su estacionalidad. Residentes (R), bimodales (R-M), especies que aproximadamente la mitad de su población es residentes y la otra mitad migratoria), migratorios de invierno (Mi), migratorios de verano (Mv), transitorios (T), accidentales (Ac), extirpados (Ex), introducidos (In) y dudoso (D).
Figura 4.30 Riqueza de especies más representativas por familia.
Considerando al endemismo, el estado de Puebla posee un total de 55 aves endémicas y ocho cuasiendémicas a México; este alto número demarca a la entidad dentro de un área importante en la evolución in situ de diversos grupos, a pesar de no poseer ninguna especie exclusiva (Cuadro 4.29 en DVD anexo).

Las especies registradas en el estado que se encuentran bajo alguna categoría de riesgo incluyen un total de 95, de las cuales 50 (8.4 %) del número total de especies reportadas para el Estado están sujetas a protección especial, 32 (5.3 %) están como amenazadas y 12 (2 %) están en peligro de extinción; además existe registrada una especie actualmente extinta: la paloma migratoria (Ectopistes migratorius) (Figura 4.31). Las aves introducidas, ya sea de manera natural o a partir de domesticaciones, han pasado a formar parte de la ornitofauna poblana, encontrándose un total de siete especies, como el pato de collar (Anas platyrhynchos), el pelicano gris (Pelecanus occidentalis), la garza chapulínera (Bubulcus ibis), la paloma común (Columba livia), el loro frente blanca (Amazona albirosa), el estornino pinto (Sturnus vulgaris) y el gorrión inglés (Passer domesticus). Además existen especies de aves introducidas en parques y jardines públicos o privados que no presentan poblaciones silvestres como el ganso chino (Anser cygnoides), el ganso egipcio (Alopochen aegyptiacus), el faisán de collar (Phasianus colchicus), la perdiz del Mediterráneo (Alectoris chukar), la gallina de Guinea (Numida meleagris) y el pavorreal (Pavo cristatus). Por tanto estas últimas no fueron incluidas en el listado final.

Así mismo, la subespecie Anas platyrhynchos diazi está considerada por la NOM-059-SEMARNAT-2001 como amenazada.

Además de las especies introducidas, cabe mencionar algunas especies cuya distribución histórica podría haber abarcado a la entidad Poblana pero en la actualidad han sido extirpadas, como es el caso de la guacamaya roja (Ara macao), el guajolote silvestre (Meleagris gallopavo) y el zopilote rey (Sarcorhamphus papa). A pesar del reporte de avistamientos del águila dorada o real (Aquila chrysaetos) su registro para la entidad es dudoso. También es importante mencionar a las especies registradas como accidentales, principalmente porque su distribución no corresponde a la conocida para el estado en la actualidad; son en total seis especies

![Diagrama](image-url)

Figura 4.31 Especies bajo alguna categoría de riesgo se acuerda a la NOM-059-SEMARNAT-2001 (DOF 2002): en peligro de extinción (P), amenazadas (A), bajo protección especial (Pt) y extintas (E)
entre las que se encuentra el pradero occidental (*Sturnella neglecta*), el vireo gris (*Vireo vicinior*), el escribano cuellicastaño (*Calcarius ornatus*) y el bolsero pechimanchado (*Icterus pectoralis*).

La gran diversidad de aves en el estado de Puebla se puede correlacionar con la presencia de un mosaico de ecosistemas, que va desde los bosques templados de pino y encino, los bosques mesófilos y las selvas tropicales, hasta los matorrales desérticos, siendo estos últimos tres de los más ricos en especies. Es por ello que la riqueza de las aves en el estado está repartida heterogéneamente y se concentra principalmente en dos regiones: la norte que corresponde a climas templados y semicáldidos e incluye las áreas con montañas en la Sierra Norte y las zonas bajas con presencia de selvas, ubicadas dentro de la planicie costera del Golfo; y una segunda región que incluye las selvas bajas y matorrales desérticos al sur de la entidad, que forman parte de la cuenca del Río Balsas y que corresponden básicamente a climas secos. Para el caso del centro, la biodiversidad ha disminuido históricamente desde la llegada de los españoles debido a las grandes modificaciones de los ambientes naturales, ya que esta zona ha sido el paso obligado para el comercio y la correspondiente urbanización y desarrollo de la industria, con paisajes rodeados por agricultura de riego y de temporal (Rojas-Soto 1995). De manera coincidente la concentración de endemismos se presenta principalmente en los bosques templados de la Sierra Norte (Villa-Bonilla et al. 2008) y algunos en las zonas áridas del sur (Rojas-Soto 1995).

Además, los patrones estacionales de la avifauna se ven influídos por la presencia de ambientes de tipo tropical que favorecen la permanencia tanto de especies residentes como de migratorias, ya que Puebla forma parte de uno de los corredores migratorios más importantes en Norteamérica que permiten el arribo y mantenimiento de muchas especies durante las etapas invernales.

Áreas de Conservación

En términos de conservación, cabe resaltar que la entidad cuenta con muy pocas áreas naturales protegidas que permitan la protección de su avifauna, siendo las más importantes: la Reserva de la Biosfera Tehuacán-Cuicatlán al sur y los parques nacionales como el Izta-Popo, el Malintzi y el Pico de Orizaba, al centro. Sin embargo, existen otras áreas que contribuyen a la conservación de las aves, como son: el parque estatal General Lázaro Cárdenas o “Flor del Bosque”, así como las reservas ecológicas La Calera, El Cerro Zapotecas, Comaló, Amalucán, Mendocinas, Tepeyac y Totolqueme. Otras áreas que están contribuyendo a la conservación son las UMA extensivas, ubicadas en su mayor porcentaje en la mixteca poblana, como es el caso de Rancho el Salado, San Juan de los Ríos, etc.

Conclusión

Es importante resaltar que se requiere de la realización de más estudios que permitan incrementar el conocimiento tanto en los patrones de distribución geográfica, ecológica y estacional, como en diversos aspectos relacionados con la biología de las especies, además de proponer nuevas áreas de conservación que abarquen la diversidad de ecosistemas y regiones que presenta la entidad, como en la Sierra del Tentzo, la Mixteca Poblan, la Sierra Negra y otras, con la finalidad de contribuir a la conservación, manejo y aprovechamiento sustentable de la avifauna en la entidad.

Mamíferos

Jesús Martínez Vázquez, Rosa María González Monroy, María Concepción López Téllez, Ana Gabriela Coladner Chamudis

Introducción

Los mamíferos silvestres han sido estudiados por las diversas interacciones que tienen con diferentes grupos biológicos, la relación depredador-presa, el papel ecológico que desempeñan, sus migraciones y las adaptaciones que han desarrollado para sobrevivir en casi todos los ambientes. Son muy variadas las funciones que los mamíferos tienen en los ecosistemas: dispersores de semillas, consumen grandes cantidades de alimento (como por ejemplo: frutos, insectos y vertebrados), polinizadores, removiendo los suelos, controladores de plagas, entre otras.

Descripción

En Puebla se encuentran distribuidos nueve órdenes de mamíferos silvestres: Didelphiomorpha, donde una de las características distintivas de sus miembros
es la peculiar anatomía de los órganos para la reproducción y la forma en que realizan esta función (Nowak 1999). En Puebla está representado con cinco especies, incluyendo marmosas y los conocidos tlacuaches del género Didelphis (Ceballos y Oliva, 2005). Cingulata y Pilosa, se caracterizan porque los dientes son homodontos, es decir, no diferenciados y porque todas las especies carecen de incisivos y caninos. En Puebla se encuentran los armadillos (Dasypus) y el oso hormiguero (Tamandua; Nowak 1999).

Las liebres y conejos del orden Lagomorpha se caracterizan por tener el labio superior dividido en forma de "Y" y poseen dos pares de incisivos en el maxilar superior (Nowak 1999). En Puebla están distribuidas siete especies. El conejo zacatuche (Romerolagus diazi) es endémico de los volcanes Popocatépetl e Iztaccíhuatl.

El orden Rodentia se caracterizan porque los integrantes de este orden presentan incisivos de crecimiento continuo y carecen de caninos (Nowak 1999). En Puebla es el segundo orden mejor representado con 51 especies como ardillas, tuzas, ratas y ratones.

Los organismos del orden Carnívora se distinguen por sus estructuras especializadas para una alimentación basada en carne; tienen caninos muy desarrollados, premolares y molares adaptados para cortar y triturar y poseen fuertes maxilares (Nowak 1999). En Puebla se encuentran 20 especies.

Los organismos del orden Soricomorpha presentan el hocico alargado y cinco dedos con garras en cada pata, con pelo denso y lustroso y su rasgo peculiar es que su metabolismo es muy alto, por lo que la mayoría de las especies tienen que consumir alimento en forma casi continua, esto es así para las musarañas: debido a su pequeña talla, tienen una gran superficie en relación a su masa, por lo que pierden mucha energía en forma de calor (Nowak 1999). En Puebla se encuentran distribuidas siete especies precisamente conocidas como musarañas.

Los murielágos del orden Chiroptera se caracterizan porque son los únicos mamíferos que se desplazan volando y porque la mayoría de las especies se guían por medio de la ecolocación (Nowak 1999). Es el segundo orden mejor representado en Puebla con 66 especies.

La característica principal del orden Artiodactyla es la presencia de un número par (dos o cuatro de-dos) en las extremidades; la única excepción son los miembros del género Tayasui (Nowak 1999).

Diversidad y riqueza

Se encuentran 31 especies de mamíferos endémicos de México en el estado de Puebla, correspondientes a los ordenes: Rodentia, Lagomorpha, Soricomorpha, Artiodactyla, Cingulata, Chiroptera, Didelphimorphia y Carnivora. Por ejemplo, la Spermophilus perotis es una ardilla que se caracteriza por presentar un anillo blanco alrededor del ojo, conocido para la región árida del Valle de Oriental entre los estados de Puebla y Veracruz, al oriente del Eje Neovolcánico Transversal, y el ratón de campo Peromyscus mekisturus, que es arbórea; lo que destaca es el tamaño excepcional de la cola así como el tamaño del quinto dedo de la pata trásera; habita en bosques de encino y pino en San Andrés Chalchicomula (Hoy Ciudad Serdán).

Se encuentran 21 especies enlistadas en la NOM-059-SEMARNAT-2001 (DOF 2002) de las 161 registradas para el estado de Puebla, de las que destaca el roedor Peromyscus mekisturus como amenazada o rara, debido a que se localiza en un área de distribución geográfica muy reducida; se le considera como una especie amenazada por su rareza, su distribución y la destrucción de su hábitat. La ardilla Sciurus oculus se considera como especie en protección especial, por causa de la tala de bosques. Como amenazadas se han registrado siete especies más, debido principalmente a la modificación de su hábitat; aquí se reconocen a tres roedores (Dipodomys phillippi, Peromyscus mekisturus y Spermophilus perotis) y cuatro carnívoros (Herpaiurus yagourandí, Galictis vittata, Lontra longicaudis y Taxidea taxus).
Cuadro 4.30 Riqueza de mamíferos en el estado de Puebla

<table>
<thead>
<tr>
<th>Orden</th>
<th>Familias</th>
<th>No. de especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didelphiomorphia</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Cingulata</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pilosa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lagomorpha</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Rodentia</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>Carnivora</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Soricomorpha</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Chiroptera</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>Artiodactyla</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Totales</td>
<td>23</td>
<td>161</td>
</tr>
</tbody>
</table>

Cuadro 4.31 Mamíferos que se encuentran en el estado de Puebla. Estatus de conservación, de acuerdo al sistema de clasificación de Ramírez-Pulido et al. 2005. Estatus de conservación de acuerdo a SEMARNAT: P=Peligro de extinción, A=Amenazada, Pr=Protección especial.

<table>
<thead>
<tr>
<th>Clase Mammalia</th>
<th>Estatus de conservación SEMARNAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didelphimorphia</td>
<td></td>
</tr>
<tr>
<td>Marmosida</td>
<td></td>
</tr>
<tr>
<td>Tlacuatzin canescens canescens</td>
<td></td>
</tr>
<tr>
<td>Marmosa mexicana</td>
<td></td>
</tr>
<tr>
<td>Philander opossum</td>
<td></td>
</tr>
<tr>
<td>Didelphidae</td>
<td></td>
</tr>
<tr>
<td>Didelphis marsupialis caucae</td>
<td></td>
</tr>
<tr>
<td>Didelphis virginiana californica</td>
<td></td>
</tr>
<tr>
<td>Cingulata</td>
<td></td>
</tr>
<tr>
<td>Dasypodidae</td>
<td></td>
</tr>
<tr>
<td>Dasypus novemcinctus mexicanus</td>
<td></td>
</tr>
<tr>
<td>Pilosa</td>
<td></td>
</tr>
<tr>
<td>Myrmecophagidae</td>
<td></td>
</tr>
<tr>
<td>Tamandua mexicana</td>
<td></td>
</tr>
<tr>
<td>Lagomorpha</td>
<td></td>
</tr>
<tr>
<td>Leporidae</td>
<td></td>
</tr>
<tr>
<td>Romerolagus diazi</td>
<td></td>
</tr>
<tr>
<td>Lepus callotis callotis</td>
<td></td>
</tr>
<tr>
<td>Lepus californicus</td>
<td></td>
</tr>
<tr>
<td>Sylvilagus audubonii</td>
<td></td>
</tr>
<tr>
<td>Sylvilagus brasiliensis</td>
<td></td>
</tr>
<tr>
<td>Sylvilagus cunicularius</td>
<td></td>
</tr>
<tr>
<td>Sylvilagus floridanus orizabae</td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 4.31

<table>
<thead>
<tr>
<th>Clase Mammalia</th>
<th>Estatus de conservación SEMARNAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodentia</td>
<td></td>
</tr>
<tr>
<td>Sciuridae</td>
<td></td>
</tr>
<tr>
<td>Glaucomys volans goldmani</td>
<td></td>
</tr>
<tr>
<td>Sciurus aureogaster</td>
<td></td>
</tr>
<tr>
<td>Sciurus deppei</td>
<td></td>
</tr>
<tr>
<td>Sciurus ocularis</td>
<td></td>
</tr>
<tr>
<td>Spermophilus mexicanus</td>
<td></td>
</tr>
<tr>
<td>Spermophilus perotoensis</td>
<td></td>
</tr>
<tr>
<td>Spermophilus variegatus</td>
<td></td>
</tr>
<tr>
<td>Sciuridae</td>
<td></td>
</tr>
<tr>
<td>Glaucomys volans goldmani</td>
<td></td>
</tr>
<tr>
<td>Sciurus aureogaster</td>
<td></td>
</tr>
<tr>
<td>Sciurus deppei</td>
<td></td>
</tr>
<tr>
<td>Sciurus ocularis</td>
<td></td>
</tr>
<tr>
<td>Spermophilus mexicanus</td>
<td></td>
</tr>
<tr>
<td>Spermophilus perotoensis</td>
<td></td>
</tr>
<tr>
<td>Spermophilus variegatus</td>
<td></td>
</tr>
<tr>
<td>Muridae</td>
<td></td>
</tr>
<tr>
<td>Baiomys musculus</td>
<td></td>
</tr>
<tr>
<td>Baiomys taylori</td>
<td></td>
</tr>
<tr>
<td>Hodomys alleni</td>
<td></td>
</tr>
<tr>
<td>Megadontomys thomasi</td>
<td></td>
</tr>
<tr>
<td>Microtus quasipater</td>
<td></td>
</tr>
<tr>
<td>Microtus mexicanus</td>
<td></td>
</tr>
<tr>
<td>Neotoma mexicana torquata</td>
<td></td>
</tr>
<tr>
<td>Neotomodon alstoni</td>
<td></td>
</tr>
<tr>
<td>Oligoryzomys fulvescens</td>
<td></td>
</tr>
<tr>
<td>Oryzomys alfaroii</td>
<td></td>
</tr>
<tr>
<td>Oryzomys chapmani chapmani</td>
<td></td>
</tr>
<tr>
<td>Oryzomys couesi aztecs</td>
<td></td>
</tr>
<tr>
<td>Oryzomys melanotis</td>
<td></td>
</tr>
<tr>
<td>Oryzomys rostratus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus aztecs</td>
<td></td>
</tr>
<tr>
<td>Peromyscus beatae</td>
<td></td>
</tr>
<tr>
<td>Peromyscus boylii</td>
<td></td>
</tr>
<tr>
<td>Peromyscus bullatus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus difficilis amplus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus furvus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus gratus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus leucopus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus levipes</td>
<td></td>
</tr>
<tr>
<td>Peromyscus maniculatus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus mekisturus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus melanophrys</td>
<td></td>
</tr>
<tr>
<td>Peromyscus melanotis</td>
<td></td>
</tr>
<tr>
<td>Peromyscus mexicanus</td>
<td></td>
</tr>
<tr>
<td>Peromyscus truei</td>
<td></td>
</tr>
<tr>
<td>Reithrodontomys chrysopsis</td>
<td></td>
</tr>
<tr>
<td>Reithrodontomys fulvescens</td>
<td></td>
</tr>
<tr>
<td>Reithrodontomys megalotis saturatus</td>
<td></td>
</tr>
<tr>
<td>Reithrodontomys mexicanus mexicanus</td>
<td></td>
</tr>
<tr>
<td>Reithrodontomys sumichrasti sumichrasti</td>
<td></td>
</tr>
<tr>
<td>Sigmodon hudsonius obvelatus</td>
<td></td>
</tr>
<tr>
<td>Sigmodon leucotis</td>
<td></td>
</tr>
<tr>
<td>Tylomys nigripes</td>
<td></td>
</tr>
<tr>
<td>Geomyidae</td>
<td></td>
</tr>
<tr>
<td>Cratogeomys merriami</td>
<td></td>
</tr>
<tr>
<td>Orthogeomys grandis</td>
<td></td>
</tr>
<tr>
<td>Orthogeomys hispidus</td>
<td></td>
</tr>
<tr>
<td>Thomomys umbrinus umbrinus</td>
<td></td>
</tr>
<tr>
<td>Heteromyidae</td>
<td></td>
</tr>
<tr>
<td>Dipodomys phillipsii</td>
<td></td>
</tr>
<tr>
<td>Liomys irroratus</td>
<td></td>
</tr>
<tr>
<td>Perognathus flavus</td>
<td></td>
</tr>
<tr>
<td>Geomyidae</td>
<td></td>
</tr>
<tr>
<td>Cratogeomys merriami</td>
<td></td>
</tr>
<tr>
<td>Orthogeomys grandis</td>
<td></td>
</tr>
<tr>
<td>Orthogeomys hispidus</td>
<td></td>
</tr>
<tr>
<td>Thomomys umbrinus umbrinus</td>
<td></td>
</tr>
<tr>
<td>Heteromyidae</td>
<td></td>
</tr>
<tr>
<td>Dipodomys phillipsii</td>
<td></td>
</tr>
<tr>
<td>Liomys irroratus</td>
<td></td>
</tr>
<tr>
<td>Perognathus flavus</td>
<td></td>
</tr>
</tbody>
</table>
Continúa cuadro 4.31

<table>
<thead>
<tr>
<th>Clase Mammalia</th>
<th>Estatus de conservación SEMARNAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnívoros</td>
<td></td>
</tr>
<tr>
<td>Canidae</td>
<td></td>
</tr>
<tr>
<td>Canis latrans cagottis</td>
<td>A</td>
</tr>
<tr>
<td>Urocyon cinereoargenteus</td>
<td>A</td>
</tr>
<tr>
<td>Felidae</td>
<td></td>
</tr>
<tr>
<td>Herpailurus yagouroundi</td>
<td>P</td>
</tr>
<tr>
<td>Leopardus pardalis</td>
<td>P</td>
</tr>
<tr>
<td>Leopardus viverrinus</td>
<td>P</td>
</tr>
<tr>
<td>Lynx rufus escuinapae</td>
<td>P</td>
</tr>
<tr>
<td>Puma concolor</td>
<td>P</td>
</tr>
<tr>
<td>Mustelidae</td>
<td></td>
</tr>
<tr>
<td>Eira barbara senex</td>
<td>P</td>
</tr>
<tr>
<td>Galictis vittata</td>
<td>A</td>
</tr>
<tr>
<td>Lontra longicaudis</td>
<td>A</td>
</tr>
<tr>
<td>Mustela frenata</td>
<td>A</td>
</tr>
<tr>
<td>Taxidea taxus</td>
<td>A</td>
</tr>
<tr>
<td>Mephitidae</td>
<td></td>
</tr>
<tr>
<td>Conepatus leucodonos</td>
<td>P</td>
</tr>
<tr>
<td>Mephitis macroura macroura</td>
<td>P</td>
</tr>
<tr>
<td>Spilogale gracilis</td>
<td>P</td>
</tr>
<tr>
<td>Spilogale putorius</td>
<td>P</td>
</tr>
<tr>
<td>Procyonidae</td>
<td></td>
</tr>
<tr>
<td>Bassariscus astutus astutus</td>
<td>P</td>
</tr>
<tr>
<td>Bassariscus sumichrasti</td>
<td>P</td>
</tr>
<tr>
<td>Nasua narica</td>
<td>P</td>
</tr>
<tr>
<td>Procyon lotor</td>
<td>P</td>
</tr>
<tr>
<td>Soricomorpha</td>
<td></td>
</tr>
<tr>
<td>Soricidae</td>
<td></td>
</tr>
<tr>
<td>Cryptotis alticola</td>
<td>Pr</td>
</tr>
<tr>
<td>Cryptotis parva pueblensis</td>
<td>Pr</td>
</tr>
<tr>
<td>Cryptotis mexicana</td>
<td>Pr</td>
</tr>
<tr>
<td>Sorex macrodon</td>
<td>Pr</td>
</tr>
<tr>
<td>Sorex areolatus</td>
<td>Pr</td>
</tr>
<tr>
<td>Sorex saussurei</td>
<td>Pr</td>
</tr>
<tr>
<td>Sorex ventralis</td>
<td>Pr</td>
</tr>
<tr>
<td>Chiroptera</td>
<td></td>
</tr>
<tr>
<td>Emballonuridae</td>
<td></td>
</tr>
<tr>
<td>Balantiopteryx io</td>
<td></td>
</tr>
<tr>
<td>Balantiopteryx plicata plicata</td>
<td></td>
</tr>
<tr>
<td>Mormoopidae</td>
<td></td>
</tr>
<tr>
<td>Mormoops megalophylla megalophylla</td>
<td></td>
</tr>
<tr>
<td>Pteronotus davini fulvus</td>
<td></td>
</tr>
<tr>
<td>Pteronotus parnelli mexicanus</td>
<td></td>
</tr>
<tr>
<td>Phyllostomidae</td>
<td></td>
</tr>
<tr>
<td>Anoura geoffroyi lasiopyga</td>
<td></td>
</tr>
<tr>
<td>Artibeus hirsutus</td>
<td></td>
</tr>
<tr>
<td>Artibeus intermedius</td>
<td></td>
</tr>
<tr>
<td>Artibeus jamaicensis triomylus</td>
<td></td>
</tr>
<tr>
<td>Artibeus lituratus palmarum</td>
<td></td>
</tr>
<tr>
<td>Carolia sowelli</td>
<td></td>
</tr>
<tr>
<td>Carolia perspicillata azteca</td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 4.31

<table>
<thead>
<tr>
<th>Clase Mammalia</th>
<th>Estatus de conservación SEMARNAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiroptera</td>
<td></td>
</tr>
<tr>
<td>Carolia subrufa</td>
<td>A</td>
</tr>
<tr>
<td>Centurio senex senex</td>
<td></td>
</tr>
<tr>
<td>Chiroderma salvini scopaeum</td>
<td></td>
</tr>
<tr>
<td>Chiroderma villosum</td>
<td></td>
</tr>
<tr>
<td>Choeronycteris mexicana</td>
<td></td>
</tr>
<tr>
<td>Dermanura azteca azteca</td>
<td></td>
</tr>
<tr>
<td>Dermanura tolteca</td>
<td></td>
</tr>
<tr>
<td>Dermanura phaeotis</td>
<td></td>
</tr>
<tr>
<td>Diphylla ecaudata</td>
<td></td>
</tr>
<tr>
<td>Desmodus rotundus murinus</td>
<td></td>
</tr>
<tr>
<td>Enchlostomus hartii</td>
<td></td>
</tr>
<tr>
<td>Glossophaga leachi</td>
<td></td>
</tr>
<tr>
<td>Glossophaga morenoi</td>
<td></td>
</tr>
<tr>
<td>Glossophaga soricina handleyi</td>
<td></td>
</tr>
<tr>
<td>Hytorcyncteris underwoodi</td>
<td></td>
</tr>
<tr>
<td>Leptonycteris curasaoe yerbabuenae</td>
<td></td>
</tr>
<tr>
<td>Leptonycteris nivalis</td>
<td></td>
</tr>
<tr>
<td>Macrotes waterhousii mexicanus</td>
<td></td>
</tr>
<tr>
<td>Micronycteris microtis</td>
<td></td>
</tr>
<tr>
<td>Platyrhinus heleni</td>
<td></td>
</tr>
<tr>
<td>Sturnira lilium parvidens</td>
<td></td>
</tr>
<tr>
<td>Sturnira ludovici ludovici</td>
<td></td>
</tr>
<tr>
<td>Natalidae</td>
<td></td>
</tr>
<tr>
<td>Natalus stramineus</td>
<td></td>
</tr>
<tr>
<td>Vespertilionidae</td>
<td></td>
</tr>
<tr>
<td>Baeodon alleni</td>
<td></td>
</tr>
<tr>
<td>Corynorhinus mexicanus</td>
<td></td>
</tr>
<tr>
<td>Eptesicus brasiliensis</td>
<td></td>
</tr>
<tr>
<td>Eptesicus furinalis gaumeri</td>
<td></td>
</tr>
<tr>
<td>Eptesicus fuscus miradorensis</td>
<td></td>
</tr>
<tr>
<td>Idionycteris phyllotis</td>
<td></td>
</tr>
<tr>
<td>Lasiurus bloseevilli telliota</td>
<td></td>
</tr>
<tr>
<td>Lasiurus cinererus cinereus</td>
<td></td>
</tr>
<tr>
<td>Lasiurus ega</td>
<td></td>
</tr>
<tr>
<td>Lasiurus intermedius intermedius</td>
<td></td>
</tr>
<tr>
<td>Lasiurus xanthinus</td>
<td></td>
</tr>
<tr>
<td>Myotis albescens</td>
<td>Pr</td>
</tr>
<tr>
<td>Myotis auriculacea</td>
<td></td>
</tr>
<tr>
<td>Myotis californiae mexicanus</td>
<td></td>
</tr>
<tr>
<td>Myotis ciliolabrum melanorhinos</td>
<td></td>
</tr>
<tr>
<td>Myotis elegans</td>
<td></td>
</tr>
<tr>
<td>Myotis keaysi pilosatibialis</td>
<td></td>
</tr>
<tr>
<td>Myotis nigricans</td>
<td></td>
</tr>
<tr>
<td>Myotis trysanodes</td>
<td></td>
</tr>
<tr>
<td>Myotis velifer velifer</td>
<td></td>
</tr>
<tr>
<td>Myotis volans</td>
<td></td>
</tr>
<tr>
<td>Nycticeius humeralis mexicanus</td>
<td></td>
</tr>
<tr>
<td>Rhogeessa gracilis</td>
<td></td>
</tr>
<tr>
<td>Rhogeessa tumida</td>
<td></td>
</tr>
<tr>
<td>Molossidae</td>
<td></td>
</tr>
<tr>
<td>Molossus aztecos</td>
<td></td>
</tr>
<tr>
<td>Molossus rufus</td>
<td></td>
</tr>
<tr>
<td>Molossus sinaloe</td>
<td></td>
</tr>
<tr>
<td>Nyctinomops aurispinosus</td>
<td></td>
</tr>
<tr>
<td>Nyctinomops macrotis</td>
<td></td>
</tr>
<tr>
<td>Promops centralis centralis</td>
<td></td>
</tr>
<tr>
<td>Tadarida brasiliensis mexicana</td>
<td></td>
</tr>
</tbody>
</table>
Continúa cuadro 4.31

<table>
<thead>
<tr>
<th>Clase Mammalia</th>
<th>Estatus de conservación SEMARNAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artiodactyla</td>
<td></td>
</tr>
<tr>
<td>Cervidae</td>
<td></td>
</tr>
<tr>
<td>Mazama americana tamama</td>
<td></td>
</tr>
<tr>
<td>Odocoltis virginianus</td>
<td></td>
</tr>
<tr>
<td>Tayassuidae</td>
<td></td>
</tr>
<tr>
<td>Pecari tajacu</td>
<td></td>
</tr>
</tbody>
</table>

En peligro de extinción se encuentran cinco especies, debido a que sus poblaciones o áreas de distribución han disminuido: el conejo zacatuche (Romerolagus diazi), el oso hormiguero (Tamandua mexicana), el ocelote (Leopardus pardalis), el tigrillo (Leopardus wiedii) y el viejo de monte (Eira barbara).

De la presencia del cacomixtle tropical (Bassariscus sumichrasti) en el estado de Puebla se encuentra un registro en la colección del Occidental Collage, Moore Laboratory of Zoology de Los Angeles, California, Estados Unidos de Norteamérica (López-Wilchis y López-Jardines 2000) y Villarreal (2000) lo ha registrado en Quicayán, Municipio de Tecamatlán, Puebla.

Es importante realizar estudios biológicos de manera detallada de los mamíferos que se encuentran en el estado para contribuir en su protección y conservación de manera planificada.

Importancia y usos

Los mamíferos tienen una gran importancia en los ecosistemas; algunos son parte esencial en las cadenas tróficas como alimento y depredadores de otros grupos de organismos. Algunas especies tienen interés económico para el hombre, como alimento de subsistencia para la obtención de la llamada “carne de monte”, que es una costumbre muy arraigada y difundida. De las más consumidas en el estado de Puebla se encuentran las liebres, conejos, ardillas, armadillos y venado de cola blanca (Leopold 1987).

Conclusiones

Es necesario destacar que el conocimiento de los mamíferos silvestres de Puebla está aún incompleto, por lo que es necesario diseñar programas de apoyo e intercambio de información y ante todo, realizar muestreos en lugares no estudiados para contar con un inventario mastofaunístico constantemente actualizado y útil.

Estudio de caso 4.1

Diversidad de plantas acuáticas en Puebla

Sara Bonilla-Meza y Ernesto Mangas-Ramírez

Las plantas acuáticas conforman áreas alrededor de diversos sistemas acuáticos como lagos, lagunas, ríos y embalses, entre otros. Las hidrófitas se clasifican en enraizadas, libres flotadoras y libres sumergidas. La importancia de la vegetación acuática como parte integral de diversos ecosistemas radica en su capacidad para la estabilización de sedimentos, por aportar producción primaria y por su capacidad de incorporar y proveer de nutrientes a través de la descomposición de la materia orgánica que se genera en los cuerpos de agua como se muestra en la Figura E.4.1.1 (Lot et al. 2004, Wetzel 2001).
Figura E.4.1.1 Especie de lirio *Eichhornia crassipes* en Puebla (Foto: Sara Bonilla Meza).

Figura E.4.2 *Nymphaea ampla* en su hábitat, conocida como "reina de agua" (Foto: Sara Bonilla Meza).
También funcionan como hábitat, resguardo, y sitio de reproducción y alimento para aves acuáticas, peces y diversas especies de anfibios e invertebrados acuáticos. Algunas de las especies aquí descritas realizan un papel fundamental de los procesos naturales en la autopurificación de aguas contaminadas, como el lirio acuático (*Eichhornia crassipes*) representado en la Figura E.4.1.2 y el tule (*Typha domingensis*), que se consideran indicadoras de la calidad del agua (Lot *et al.* 2004).

Algunas de estas especies son utilizadas como materia prima para la elaboración de diversos productos (artesanías, biofertilizante, papel y biofiltros) como en el caso del Lago de Valsequillo. Actualmente se reconocen de un total de 49 familias de angiospermas a 199 géneros, con 603 especies acuáticas y subacuáticas (Lot *et al.* 1999). En 22 localidades del estado de Puebla se han registrado 25 especies de angiospermas, 19 monocotiledonas y 6 dicotiledonas (Cuadro E.4.1.1).

Cuadro E.4.1.1 Diversidad de plantas acuáticas en el estado de Puebla

<table>
<thead>
<tr>
<th>Especie</th>
<th>Municipio</th>
<th>Forma de vida</th>
<th>Habitat</th>
<th>Altitud (metros sobre el nivel del mar)</th>
<th>Referencias</th>
</tr>
</thead>
</table>

(Continúa)
<table>
<thead>
<tr>
<th>Especie</th>
<th>Municipio</th>
<th>Forma de vida</th>
<th>Habitat</th>
<th>Altitud (metros sobre el nivel del mar)</th>
<th>Referencias</th>
</tr>
</thead>
</table>

Contínua cuadro E.4.1.1

<table>
<thead>
<tr>
<th>Especie</th>
<th>Municipio</th>
<th>Forma de vida</th>
<th>Habitat</th>
<th>Altitud (metros sobre el nivel del mar)</th>
<th>Referencias</th>
</tr>
</thead>
</table>

La Colección Entomológica de la Escuela de Biología de la BUAP fue iniciada en el año 2003 con los trabajos de Lino Zumaquero (com. pers.). Actualmente cuenta con 5 800 ejemplares, de los cuales 3 488 (60.1 %) corresponden a 11 órdenes: Blattoda con 50 individuos (1.4 %), Coleoptera con 3 139 (89.9 %), Hemiptera con 6 (0.17 %), Hymenoptera con 16 (0.45 %), Lepidoptera con 11 (0.31 %), Mantodea con 3 (0.08 %), Odonata con 8 (0.23 %), Orthoptera con 241 (6.90 %) y Phasmida con 9 (0.25 %). De todos éstos, sólo el 79.7 % (2 501) de los
Coleópteros han sido determinados hasta especie y presentan la siguiente distribución: la familia Melolonthidae con 12 géneros y 46 especies, la Passalidae con un género y una especie, la Scarabaeidae con 19 géneros y 32 especies, y la familia Trogidae con una especie, es decir, 80 especies de la superfamilia Scarabaeoidea o Lamelicornia. Morón y Deloya (1993) han predicho 678 especies de esta superfamilia para el estado de Puebla, lo que significa que se tiene un 11.8 % de este total en la colección de la Escuela de Biología. El sesgo hacia los coleópteros es un reflejo de las líneas de investigación en entomología que se trabajan en la escuela, principalmente sistemática y ecología de Scarabaeoidea.

Estudio de caso 4.3
Coleópteros lamelicornios

_Estos escarabajos tienen una participación destacada en los flujos de la materia y la energía en casi todos los ambientes continentales, sobre todo como consumidores primarios y degradadores. Su valor ecológico se incrementa pues usualmente las larvas consumen gran cantidad de substrato, evacuan proporciones importantes de heces ricas en nutrientes nitrogenados además de que representa una fuente importante de alimento para depredadores, parásitos y parasitoides (Morón et al. 1997, Morón y Aragón 2003) (Cuadro E.4.3.1). Existen diversos trabajos que proponen usar a estas especies como indicadoras del estado de conservación del ecosistema, particularmente de las subfamilias Rutelinae, Dynastinae y Scarabaeinae (Morón 1997; Halfifer y Favila 1993). Recientemente, Yanes-Gómez (2007) propuso 24 de estas especies como indicadoras para un bosque tropical caducifolio de la región de Santo Domingo Huehuetlán. Además, existe otro complejo de insectos que pueden dañar el sistema radicular en los cultivos, en donde se encuentran las larvas de escarabajos conocidas como “gallina ciega” que incluyen especies de los géneros Phyllophaga, Paramomala, Cyclocephala y Diploptaxis. Como plaga en más de 40 cultivos alimenticios o industriales, la “gallina ciega” puede causar desde el amarillamiento de las plantas, hasta la pérdida total de la cosecha (Aragón et al. 1998).

En México, se han registrado cerca de 1 750 especies de escarabajos lamelicornios, incluidas en diez familias (Morón 2003; Morón 2009). Durante las investigaciones efectuadas entre 1996 y 2008 en diferentes ambientes característicos del estado de Puebla, se ha confirmado la presencia de 264 especies de escarabajos incluidas en 88 géneros de nueve familias (Cuadro E.4.3.1), cifras equivalentes al 15 % de las especies y al 44 % de los géneros de estos grupos a escala nacional. Tal diversidad es alta en comparación con otros estados y evidencia la complejidad de los ambientes característicos de la entidad. Es posible que cuando menos existan representantes de otras 50 especies que se han citado de Hidalgo, Morelos, Oaxaca y Veracruz, además de otras hasta ahora no descubiertas en las montañas y en los valles áridos.

En el territorio que ocupa el estado de Puebla confluyen corredores faunísticos de montaña y de
Cuadro E.4.3.1 Se aprecia una síntesis de los hábitos de los géneros registrados de escarabajos de Puebla.

<table>
<thead>
<tr>
<th>Familias</th>
<th>Subfamilias</th>
<th>Géneros</th>
<th>Especies</th>
<th>Hábitos adulto-larva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melolonthidae</td>
<td>Melolonthinae</td>
<td>Phyllophaga</td>
<td>34</td>
<td>Fitófago – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diplotaxis</td>
<td>14</td>
<td>Fitófago – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macrodaecylius</td>
<td>6</td>
<td>Fitófago – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polyphylla</td>
<td>2</td>
<td>Fitófago – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isanychus</td>
<td>1</td>
<td>Fitófago – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chnaunanthus</td>
<td>1</td>
<td>Florícola – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoplia</td>
<td>1</td>
<td>Florícola – saprófago</td>
</tr>
<tr>
<td></td>
<td>Rutelinae</td>
<td>Paranoama</td>
<td>18</td>
<td>Florícola – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plusiotis</td>
<td>5</td>
<td>Florícola – xilófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strigoderma</td>
<td>4</td>
<td>Florícola – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epectinaspis</td>
<td>2</td>
<td>Florícola – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysina</td>
<td>2</td>
<td>Florícola – xilófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pelidnota</td>
<td>2</td>
<td>Florícola – xilófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macraspis</td>
<td>2</td>
<td>Florícola – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macropodes</td>
<td>1</td>
<td>Florícola – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macropodellus</td>
<td>1</td>
<td>Florícola – rizófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calamacraspis</td>
<td>1</td>
<td>Florícola – saprófago</td>
</tr>
<tr>
<td></td>
<td>Dynastinae</td>
<td>Cyclocephala</td>
<td>16</td>
<td>Florícola – rizo-saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orizabus</td>
<td>3</td>
<td>Saprófagos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golofa</td>
<td>3</td>
<td>Cauñófago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phileurus</td>
<td>3</td>
<td>Depredador – xilófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xyloryctes</td>
<td>3</td>
<td>Saprófagos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ligyrus</td>
<td>2</td>
<td>Cauñófago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strategus</td>
<td>2</td>
<td>Cauñófago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enema</td>
<td>2</td>
<td>Saprófagos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dyscinetus</td>
<td>1</td>
<td>Desconocidos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ancognatha</td>
<td>1</td>
<td>Desconocidos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aspidolea</td>
<td>1</td>
<td>Florícola – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coelosis</td>
<td>1</td>
<td>Mirmecófilos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynastes</td>
<td>1</td>
<td>Florícola – xilófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemiphilieurus</td>
<td>1</td>
<td>Depredador – xilófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homophilieurus</td>
<td>1</td>
<td>Termitófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tehuacania</td>
<td>1</td>
<td>Desconocidos</td>
</tr>
<tr>
<td>Cetoniidae</td>
<td>Cetoniinae</td>
<td>Euphoria</td>
<td>10</td>
<td>Florícola – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cotinis</td>
<td>3</td>
<td>Melífago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gymnetis</td>
<td>2</td>
<td>Melífago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hologymnetis</td>
<td>1</td>
<td>Melífago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gymnetina</td>
<td>1</td>
<td>Melífago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroxanthae</td>
<td>1</td>
<td>Florícola – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paragnorimus</td>
<td>1</td>
<td>Florícola – xilófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inca</td>
<td>1</td>
<td>Melífago – xilófago</td>
</tr>
<tr>
<td>Geotrupidae</td>
<td>Geotrupinae</td>
<td>Geotrupes</td>
<td>2</td>
<td>Coprófago – saprófago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceratotrupes</td>
<td>2</td>
<td>Coprófago – saprófago</td>
</tr>
<tr>
<td></td>
<td>Bolboceratinae</td>
<td>Bolbelasmus</td>
<td>1</td>
<td>Desconocidos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eucanthus</td>
<td>1</td>
<td>Saprófagos</td>
</tr>
<tr>
<td></td>
<td>Athyreinae</td>
<td>Neorthyrus</td>
<td>1</td>
<td>Desconocidos</td>
</tr>
</tbody>
</table>

(Continúa)
amplia distribución y también han favorecido el aislamiento de especies endémicas o con distribución muy restringida, como es el caso del dinastino

<table>
<thead>
<tr>
<th>Familias</th>
<th>Subfamilias</th>
<th>Géneros</th>
<th>Especies</th>
<th>Hábitos adulto-larva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ateuchus</td>
<td>1</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontherus</td>
<td>1</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitonthophagus</td>
<td>1</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euoniticellus</td>
<td>1</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ataenius</td>
<td>12</td>
<td>Saprófago - rizófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nialaphodius</td>
<td>2</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalocyclus</td>
<td>2</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neopsammidius</td>
<td>2</td>
<td>Saprófagos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrilinus</td>
<td>1</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labarmus</td>
<td>1</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platyanthus</td>
<td>1</td>
<td>Saprófagos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troginae</td>
<td>4</td>
<td>Necrófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omorgus</td>
<td>2</td>
<td>Necrófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarabaeinae</td>
<td>13</td>
<td>Necrófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onthophagus</td>
<td>10</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canthon</td>
<td>5</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltochilium</td>
<td>4</td>
<td>Necrófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copris</td>
<td>4</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phanaeus</td>
<td>4</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicotomius</td>
<td>3</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coprophanaeus</td>
<td>2</td>
<td>Coprófago - saprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canthidium</td>
<td>2</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudocanthon</td>
<td>1</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canthon</td>
<td>1</td>
<td>Coprófago - coprófago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófaga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micófago - saprófago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Micófago - saprófag
y del Geotrupes reddelli, especie coprófaga cavernicolae que solo se conoce de la zona de Cuetzalan.

La destrucción de los bosques nativos reduce las áreas de distribución de los escarabajos especializados y eventualmente puede ocasionar la desaparición de las especies en el estado o la extinción de los endemismos. Por otra parte, la expansión de los ambientes agrícolas y pecuarios favorece el establecimiento de especies oportunistas que pueden asociarse con los cultivos y el excremento del ganado. Sin embargo, algunas especies forestales se adaptan a las modificaciones inducidas, siempre que se conserven condicio-
nes de sombra, humedad relativa y sustratos alternativos para su desarrollo. Por ejemplo, entre las especies de lamelicornios más notables del estado se encuentra el escarabajo rinoceronte (Dynastes hyllus) que mide hasta 9 cm de longitud y cuyas larvas se desarrollan durante dos o tres años comiendo el humus acumulado en las cavidades de los troncos de agua-catero silvestre o cultivado (Morón 1987).

Hasta donde se sabe, la fauna de escarabajos lamelicornios se ha conservado bien en las zonas protegidas de Puebla, así como en muchas montañas y cañadas, donde se alojan las especies con distribución restringida, pero seguramente esta fauna ha sufrido cambios importantes en otras áreas deforestadas durante los últimos 50 años. El cambio en los usos del suelo y la introducción de árboles exóticos afecta directamente a las especies forestales y propicia el predominio de especies heliófilas que aprovechan los ambientes agrícolas y los pastizales inducidos.

Para conservar los ensambles de especies nativas de lamelicornios, además de proteger áreas forestales amplias es necesario pensar en diseñar corre-
dores arbolados que permitan la comunicación entre las poblaciones de las reservas o parques naturales. También sería útil efectuar muestreos en las áreas protegidas y sus periféricos para evaluar la riqueza de especies y obtener información sobre el posible recambio de especies, con la cual se puedan preparar programas específicos para mantener la diversidad local.

Otras medidas que pueden ayudar a conservar a los escarabajos son: a) no retirar la madera muerta en los bosques sujetos a algún tipo de aprovechamiento selectivo, porque en los tocones, troncos derribados o muertos en pie se desarrollan larvas de numerosos lamelicornios; b) no elimi-
nar completamente la hojarasca de los huertos y plantaciones porque allí prosperan comunidades de escarabajos benéficos como recicladores de ma-
tería; c) reemplazar las luminarias del alumbrado público por unidades de vapor de sodio, cuya lon-
gitud de onda es menos atractiva para las especies fotófilas, de otro modo los ejemplares atraidos por las luces blancas generalmente perecen aplastados por los vehículos y los peatones; d) educar a la po-
blicación para que no dañe a estos escarabajos de-
bido al miedo o repulsión que generan basado en supersticiones, así como recomendar que no par-
ticipen en la recolección ilegal de ejemplares coti-
zados en los mercados internacionales por su ta-
maño, belleza o rareza.

Estudio de caso 4.4

La diversidad de las hormigas

Mariana del Socorro Cuautle Arenas

Las hormigas constituyen uno de los grupos de orga-
nismos más abundantes, diversos y dominantes en la tierra; en algunos hábitats representan del 10-
15 % del total de la biomasa animal (Beattie y Hughes 2002). Su importancia no sólo radica en su abun-
dancia, sino en la manera en que interactúan con otros organismos, especialmente las plantas (Figura E.4.4.1). Las hormigas pueden proteger a las plantas
de los herbívoros, dispersar sus semillas, polinizar sus flores e incluso pueden llegar a “alimentarlas”. A cambio de estos “servicios” las plantas pueden recompensar a las hormigas con alimento y sitios para anidar. A pesar de su importancia, pocos son los trabajos que hacen referencia a las hormigas en el estado de Puebla. Dos de ellos son listados para el país, en los que se reportan nueve especies (Rojas 1996) y posteriormente 14 especies para el estado (Rojas 2001). En trabajos realizados en zonas específicas de Puebla se reportan 10 especies en la zona del Zoológico “Africam Safari”, Puebla (Parra et al. 2003), 35 especies en el Valle de Tehuacán, San Rafael Coxcatlán (Ríos-Casanova et al. 2004) y 32 especies en el Parque Estatal “Flor del Bosque”, Amozoc de Mota (Miguelena-Bada 2008). Todos estos trabajos hablan de la necesidad de un mayor esfuerzo por conocer la biodiversidad de hormigas, pero también del potencial que representa para el Estado. Aún menos son los trabajos que hacen referencia a la diversidad de las interacciones Hormiga-Planta. Rico-Gray et al. (1998) reporta para el Valle de Zapotitlán, Zapotitlán Salinas, 13 especies de hormigas que se alimentan del néctar floral o extra-floral producido por 42 especies de plantas, resultando en 135 pares de interacciones. Un ejemplo de la diversidad de interacciones alrededor de una asociación Hormiga-Planta es la del Agave kerechei-Homóptero-Hormiga que ocurre en el Valle de Zapotitlán, Zapotitlán Salinas, (Cuautle et al. 1998, Cuautle et al. 1999). En ésta, los homópteros se alimentan de la savia del Agave insertando su pico; excretan una mielecilla, producto de desecho de su alimentación, que es forrajeada por hormigas de la especie Camponotus rubithorax. Además de las hormigas, las mielecillas atraen a moscas, abejas y avispas. La mielecilla que no es forrajeada sirve como sustrato para el crecimiento de dos especies de hongos (Capnodium sp. y Ceratocystis sp.). Así, alrededor de una interacción Hormiga-Planta se da la interacción multi-trófica en la que se pueden ver involucradas hasta 19 especies de organismos de tres reinos diferentes. La diversidad de las hormigas no sólo está en el número de especies, sino también en sus interacciones.
En el estado de Puebla se han registrado 302 especies de abejas de las aproximadamente 2 000 que se conocen para el país (Vergara y Ayala 2002). Este número coloca a Puebla como el quinto estado con mayor diversidad de abejas, después de Chihuahua, Sonora, Jalisco y Baja California. A diferencia de muchos otros grupos de organismos, la diversidad de abejas es mayor en zonas áridas o semiáridas del mundo que en zonas tropicales húmedas (Michener 1979). La Reserva de la Biósfera de Tehuacán-Cuicatlán presenta las zonas áridas con la mayor diversidad de abejas del Estado. En el Valle de Zapotitlán de las Salinas, por ejemplo, se registraron 270 especies (Vergara y Ayala 2002, Vergara y Michener 2004). Esta riqueza de especies es intermedia entre las regiones xéricas de Estados Unidos y las áreas mésicas del Altiplano Mexicano. El número de especies comunes a estas tres regiones es bajo, lo que indica diferencias en la composición florística de las áreas citadas, que ha evolucionado en tiempos recientes como resultado de la creciente aridez local (Axelrod 1979).

Las abejas son de gran importancia como polinizadores de plantas cultivadas y algunos cultivos presentes en Puebla dependen de las abejas para producir frutos de calidad comercial. Entre ellos están los frutales rosáceos como manzanas, duraznos etc; cucurbitáceas como la calabaza y hortalizas de invernadero como los jitomates y los chiles. Un estudio respecto de las abejas presentes en un huerto mixto en Huejotzingo (Vergara 2005) mostró que la diversidad que se encuentra en agroecosistemas es muy baja, comparada con la que se da en condiciones naturales, probablemente por efecto de prácticas agrícolas que no son favorables para los organismos benéficos.

Entre los polinizadores más importantes están las abejas melíferas, que son una especie introducida, las abejas sin aguijón de la subfamilia Meliponinae (Figura E.4.5.1) y algunas especies de jicotes o abejorros (género Bombus) (Figura E4.5.2). La especie de abejorro más usada para polinización en invernaderos es importada de Canadá o Estados Unidos, aunque existen especies nativas que tienen gran potencial para ser destinadas al mismo uso, como es el caso de Bombus ephippiatus (Vergara et al. 2006).
En el estado de Puebla los bosques de encino (Quercus spp.) se ubican hacia las inmediaciones de la Sierra Nevada, el volcán de la Malinche, el pico de Orizaba, así como en relictos ubicados al este de la capital, como en el cerro de La Calera, en el Parque Estatal General Lázaro Cárdenas “Flor del bosque”, barrancas ubicadas entre las unidades habitacionales Manuel Rivera Anaya, Bosques de San Sebastián y hacia la Sierra de Amozoc, la cual se extiende desde el Cerro Teopoxuchitl hasta el Cerro de la Cruz, en Tepeaca.

En la actualidad estos bosques son relictuales, puesto que están rodeados de asentamientos humanos que constantemente avanzan poniendo en riesgo la continuidad de estos ecosistemas.

Son pocos los trabajos que han estudiado la avifauna en bosques de encino en el estado, de entre los más importantes destacan los realizados por Camacho (1996), Mendoza (2003) y Mendoza y Jiménez (2005) en el parque estatal general Lázaro Cárdenas “Flor del Bosque”, en Amozoc, Puebla, de los que se desprende el registro de 105 especies, entre las que destacan Xenotriccus mexicanus, Accipiter striatus e Icterus wagleri, citadas en la NOM-059-SEMARNAT-2001. A la fecha, la Escuela de Biología de la BUAP ha realizado diversos proyectos de investigación con el fin de conocer la riqueza ornitofaunística de la región, enfocándose hacia la zona de la calera y áreas aledañas. La zona de estudio está entre los 19° 03’ de latitud norte y 98° 12’ de longitud oeste, con una altitud de 2160 msnm. En el lugar se han registrado 75 especies de aves, comprendidas en nueve órdenes y 29 familias, lo que representa el 13 % de la riqueza del estado. El orden taxonómico con mayor cantidad de especies es el de los Passeriformes (gorriones, calandrias, trogloditas y formas afines) con 57 especies (74.6 %), seguido por garzas (Ciconiiformes) representado por cuatro especies (5.3 %), palomas (Columbiformes) y colibries (Apodiformes) con tres especies cada uno (4 %); el orden Coraciiformes es el menos representado.

Los Passeriformes son el orden con el mayor número de familias (19). También se registraron cuatro especies endémicas para México, como la primavera huertera (Turdus rufopallidus), el mulato azul (Melanotis caerulenciens), el mosquero del Balsas (Xenotriccus mexicanus) y la matraca del Balsas (Campylorhynchus jocosus). Las rapaces están representadas por el halcón cernicalo (Falco sparverius), uno de los halcones más pequeños del país, el halcón cola roja (Buteo jamaicensis), una de las aves de presa de mayor tamaño, ampliamente distribuida en México y que ha desarrollado una gran variedad de estrategias de caza para conseguir las presas que constituyen su alimentación, y el gavián de Cooper (Accipiter cooper), una rapaz de tamaño mediano con hábitos forestales y que se encuentra citada en la NOM-059-SEMARNAT-2001. La presencia de pájaros carpinteros es de suma importancia, pues liberan de parásitos a los árboles. Al momento se han registrado el carpintero arlequín (Melanerpes formicivorus) y el carpinterillo mexicano (Picoides scalaris).

La estacionalidad de las aves está constituida por 52 especies residentes, 20 migratorias y 3 transitorias. Se conocen 3 especies introducidas en la zona: la garza ganadera (Bubulcus ibis), el estornino pinto (Sturnus vulgaris) y el gorrión casero (Passer domesticus).

En 2005 se documentó por primera vez al pájaro reloj (Momotus mexicanus) en el Eje Neovolcánico, del que se sabe se halla principalmente en la Vertiente del Pacífico y estribaciones de montañas, cuyo hábitat conocido son áreas semiáridas y áreas abiertas con árboles dispersos. Esta especie se distribuye, según avistamientos y la bibliografía en el estado de Puebla, hacia la Mixteca poblana y el Valle de Tehuacán, por lo que su presencia es notable. Estos
encinares también son hábitat para el mosquero del Balsas (Xenotriccus mexicanus), especie considerada por Rowley en 1963, citado por Navarro-Sigüenza en 2000, como una de las especies más raras del país; en ciertas regiones se les ha observado en pocas ocasiones, es endémica de la región del Balsas. Las áreas donde se identifica su presencia así como su hábitat se encuentran perturbadas. Esta especie está considerada como sujeta a protección especial por la Norma Oficial Mexicana (NOM-059). La martraca del Balsas (Campylorhynchus jocosus) fue observada en el bosque de encino en el dosel medio, tanto en La Calera como en Flor del Bosque y áreas aledañas, localizándose incluso nidos activos.

Estas aves ven amenazada su existencia por causa del deterioro ygradual del ecosistema, lo que origina la formación de parches a manera de islas, ocasionando una severa reducción en las poblaciones de aves que puede ocasionar la pérdida de su variabilidad genética y, en consecuencia, la erradicación de especies residentes de la zona. Como en muchos casos, existe una fuerte presión sobre este ecosistema que se encuentra amenazado por diversos factores, por lo que es necesario, además de la conservación de las áreas naturales, el desarrollo de programas de investigación que permitan conocer las especies y los procesos naturales que integran los ecosistemas en el estado.

LITERATURA CITADA

Ávila-Soriano, A. 1987. Algunos aspectos etnoherpetológicos de un Municipio totonaco de la Sierra Norte de Puebla:
Tepango de Rodríguez. Tesis de Licenciatura. ENEP Iztaca. UNAM. México. 96 pp.

Buitron, Sánchez B.E.1985. Paleontología General y vestigios de vida de los estratos geológicos del país. UNAM

HUAP.2008. Base de datos del Herbario de la Benemérita Universidad Autónoma de Puebla. BIOTICA. BUAP Puebla.
INEGI. 2004. Sistema fisigógrafico DGDTENAL. Escrito de la Subdirección de actualización de Recursos Naturales: Las Provincias Físigógraficas de México y sus Subdivisiones

Pérez, J.1996. La Acucultura y la conservación de la Biodiversidad Interciencia 21(3): 154-157. URL.

Ramírez-Guarneros, A. D. 2005 Estudio epidemiológico de las infecciones intestinales parasitarias en el estado de Puebla, mediante un programa de integración servicio-investigación, de la Facultad de Ciencias Quími- cas de la BUAP. Tesis de Maestría. Puebla, Pue. 60p.

Rodríguez, A. Sandra. 1990 Frecuencia de serotipos de Salmonella en aguas superficiales y potables en la ciudad de Puebla. Tesis de licenciatura. BUAP.

Monumento a la Identidad, ubicado en la ciudad de Tehuacán, Puebla. Esta fuente representa la relación entre los mexicanos y el maíz como base de nuestra alimentación. Existen evidencias de que el Valle de Tehuacán fue uno de los centros de domesticación y diversificación de esta especie. Foto: Abel Gil Muñoz.
INTRODUCCIÓN
Pedro Antonio López

Como se ha señalado en capítulos anteriores, el estado de Puebla presenta una accidentada orografía, gran diversidad de climas, suelos y vegetación, entre otros factores, que han propiciando una gran diversidad genética en flora, fauna y microorganismos, con un alto nivel de endemismo en algunas regiones (Álvarez y Durán 2001; Rzedowski 1992), lo que lo ubica en el séptimo lugar nacional en biodiversidad (Álvarez y Durán 2001). A lo anterior podemos sumar la riqueza cultural que a lo largo de miles de años de interacción hombre-naturaleza ha creado una mayor diversidad mediante la actividad agrícola, al cultivar y domesticar especies introducidas y locales, tanto de plantas, como de animales, generando variación infraespecífica que se ha traducido en la existencia de gran número de variedades criollas o nativas.

Existen varios intentos para definir a las poblaciones o variedades criollas o nativas (Harlan 1992; Bellon 1996; Cleveland et al. 2000; Camacho-Villa et al. 2006), aunque aún no se ha alcanzado un consenso. Al respecto, en el presente capítulo retomaremos el término de poblaciones nativas (en un contexto agronómico) para hacer referencia al conjunto de individuos que se reproducen en un ambiente local, aunque su origen evolutivo no sea la localidad o región donde actualmente se reproducen. Este grupo de individuos es el resultado de un proceso de selección empírica dirigida por el agricultor para satisfacer sus necesidades de consumo y para enfrentar sus particulares condiciones socioeconómicas y naturales de producción. Estas poblaciones son diferentes y distinguibles unas de otras, por lo que es posible precisar su identidad y caracterizarlas morfológica y genéticamente. Una de sus características es que presentan una amplia variación en su estructura genética, aunque esta variación no es aleatoria, sino que es el producto del proceso de selección natural y artificial que las originó.

El presente capítulo se ha dividido en siete secciones, incluyendo una lista de las referencias bibliográficas, con énfasis en la importancia de la diversidad de los recursos genéticos en las actividades agrícola, ganadera y forestal en el estado de Puebla. A lo largo del capítulo, brevemente se da a conocer información relacionada con aspectos socioeconómicos de las especies que se mencionan, para resaltar su importancia como recursos genéticos.

En la sección 5.2 se establece, a nivel mundial y nacional, el papel de los recursos genéticos en el contexto actual y se señalan aspectos relevantes con relación a los recursos fitogenéticos, forestales, zoogenéticos y microbianos, de manera general. En la sección 5.3 se aborda la importancia de los recursos fitogenéticos, con énfasis en las principales especies cultivadas en el estado, como básicos, hortalizas, ornamentales, cultivos de uso industrial, forrajes y frutales, presentando información sobre la diversidad genética de algunas especies. En la sección 5.4 se incluye a las especies de recolección, entre las que se cuentan algunas silvestres y avences utilizadas como medicinales, aromáticas, condimentos y ornamentales, así como otras con potencial que han sido utilizadas y domesticadas en las comunidades rurales indígenas y mestizas. En la sección 5.5 se aborda la diversidad

1 Este término fue modificado del elaborado por el grupo de trabajo de maíz, dentro de la Línea Prioritaria de Conservación y Mejoramiento de los Recursos Genéticos, del Colegio de Postgraduados.
del recurso forestal, señalando la diversidad de las principales especies maderables y no maderables de los diferentes tipos de vegetación que predominan en el estado. La sección 5.6 hace una reseña de las principales especies animales en la ganadería estatal, tanto en explotaciones comerciales intensivas como a nivel de traspatio, en los sistemas de producción familiares, con algunos ejemplos de su diversidad en diferentes regiones. En la sección 5.7 se da énfasis a la importancia de la diversidad de los microorganismos en sus diferentes usos actuales y potenciales, enfatizándose en las especies de hongos silvestres comestibles. Se emite una conclusión en relación al presente capítulo en la sección 5.8. Finalmente, en la sección 5.9 se tratan tres estudios de caso, como ejemplos del análisis de la diversidad de los recursos genéticos en el estado.

LOS RECURSOS GENÉTICOS COMO COMPONENTES DE LA BIODIVERSIDAD

Luis Villarreal Ruiz, Abel Gil Muñoz, I. Arahón Hernández Guzmán, Edgar Herrera Cabrera, Carlos Ramírez Herrera, Oswaldo R. Taboada Gaytán, Mario Valadez Ramírez, Samuel Vargas López

Los recursos genéticos son un componente fundamental de la biodiversidad (CNEVB 1999; Gaston y Spicer 1998; Pineda et al. 2007) y se definen como el material genético de valor real o potencial, entendiéndose por material genético todo material de origen vegetal, animal, microbiano o de otro tipo que contenga unidades funcionales de la herencia; por su parte, Villarreal-Ruiz y Neri-Luna (2009) definen al recurso genético como el material constituido por genes, proteínas y metabolitos o fragmentos crudos de plantas, animales o microorganismos con valor intrínseco o utilitario (actual o potencial) que representa una característica fundamental de la biocomplejidad y consecuentemente son parte de la herencia cultural y tecnológica de la humanidad. De acuerdo con la evaluación de los ecosistemas del milenio, existen cuatro tipos de servicios que brindan los ecosistemas y que incluyen la biodiversidad y los recursos genéticos en: 1) apropiación, 2) sostén, 3) regulación y 4) culturales (MEA 2005).

El aprovechamiento directo de los recursos genéticos genera beneficios económicos globales de entre 500 y 800 billones de dólares anuales, superior a los 500 billones de dólares que se obtienen por año de la industria petroquímica mundial (Kate y Laird 2000). Costanza et al. (1997) estiman que el valor de uso indirecto alcanza en promedio 33 billones de dólares para toda la biosfera, como valor mínimo estimado.

Recursos fitogenéticos

En un sentido genérico se refiere a cualquier material genético de origen vegetal (plantas, genes o fragmentos de ADN) que tienen o pueden tener un valor antropocéntrico, producto de la evolución, el fitomejoramiento clásico o la ingeniería genética (CDB 1992; Pineda et al. 2007; TIRF s.f.). La importancia de los recursos fitogenéticos se refleja en el hecho de que en México las especies destinadas a la alimentación y la agricultura incluyen 50 autóctonas y 179 introducidas (Figura 5.1), que cubren 10.2 y 9.6 millones de ha respectivamente y representan un valor en producción de 73 y 119 millones de pesos al año, respectivamente (Lépiz y Rodríguez 2006).

Recursos forestales

La diversidad de la vegetación arbórea, herbácea y arbustiva de los bosques de zonas templadas-frías, tropicales y subtropicales que cubren una superficie total de 55.2 millones de ha en México, genera productos maderables y no maderables que representan un volumen de producción de 6.4 millones de m³ y 100 millones de toneladas con beneficios económicos anuales de alrededor de 6.7 y 1.5 millones de pesos, respectivamente (SEMARNAT 2005; INEGI 2008). Además, son un reservorio de biodiversidad de importancia estratégica para el país por ser una fuente de recursos genéticos vegetales, animales y microbianos (De Alba y Reyes 1998; Loa Loza et al. 1998; Pérez Verdín 2006).

Recursos zoogenéticos

El uso de la variabilidad genética de los animales en los diferentes sistemas de producción nacional es parte de las estrategias de vida de las familias
en el medio rural. En México se han establecido explotaciones ganaderas intensivas con un alto grado de tecnificación; además, se tienen sistemas ganaderos extensivos y de traspaso con un nivel tecnológico intermedio que en conjunto representaron en 2006 una producción de carne en pie de 8 mil y, de canal, de 5 mil toneladas (bovinos, porcinos, caprinos, ovinos y aves), así como la producción de 12.6 millones de toneladas métricas de leche de bovinos y caprinos, huevo para plato, miel, cera en greña y lana sucia con un valor de 60.7 millones de pesos (INEGI 2008). Adicionalmente, la
recolección, caza y pesca de animales silvestres constituye una fuente complementaria de alimentos que provee hasta el 70 % de la ingesta proteica en regiones marginadas del país, para aquellos habitantes que mantienen un sistema tradicional de subsistencia diversificado que data de épocas prehispánicas (Toledo et al. 1985; Loa Loza et al. 1998). Como parte de la diversidad alimentaria de México, el consumo de insectos representa una fuente adicional de proteínas, así como de beneficios económicos producto de su comercialización; tal es el caso del “chinicuil”, que es una larva que se desarrolla en las raíces del maguey y cuyo uso como alimento data de épocas prehispánicas (Figura 5.2).

Recursos genéticos microbianos
La diversidad microbiana constituye una fuente inagotable de recursos genéticos útiles para el hombre, ya que de los 30 000 productos naturales bioactivos que se han descubierto, las bacterias y los hongos aportan el 33 % y 26 %, respectivamente (Henkel et al. 1999). El uso directo y comercio mundial de los hongos silvestres comestibles generó en 2004 ganancias por 1.6 billones de dólares (Boa 2004). Los hongos cultivados son una industria multimillonaria con ganancias de 3 billones de dólares anuales. Además, el uso tradicional de los microorganismos en la fermentación de bebidas, producción de alimentos y la optimización de procesos biotecnológicos en la industria alimentaria y farmacéutica tiene relevancia mundial. Su aplicación biotecnológica como biofertilizantes permite implementar sistemas de producción sostenibles en el sector primario (Bull et al. 2000).

RECURSOS FITOGENÉTICOS CULTIVADOS

Cultivos básicos
En el estado de Puebla los cuatro cultivos con mayor superficie sembrada son el maíz y sorgo (gramíneas) y el frijol y haba (leguminosas) de acuerdo al Servicio de Información Agroalimentaria y Pesquera (SIAP 2008a), los que se describen a continuación.

Maíz (Zea mays)
Esta especie se cultiva en todos los municipios del estado de Puebla aunque destacan las zonas de los Distritos de Desarrollo Rural (DDR) de Libres y de Cholula que en conjunto produjeron 572 920 t en 2007 y que representaron el 62 % de la producción estatal (SIAP 2008b). Este cultivo se produce fundamentalmente bajo condiciones de temporal (91.3 % del total sembrado en 2007) y con el empleo predominante de semillas nativas o criollas (80 % de la superficie total cultivada en 2006) (INEGI 2007).

Aunado a la gran superficie cultivada de maíz en el estado, existen otros factores que le confieren mayor importancia a esta especie, pues fue en Tehuacán donde se encontraron algunos de los restos de mazorcas fosilizados más antiguos (ca. 7 000 años A. C. según MacNeish 1995). Desde el punto de vista agronómico, en cada microrregión del estado existe una variabilidad considerable en términos de coloración de grano (Figura 5.3), niveles de precocidad –que se refiere a los días a floración masculina y femenina– (Cuadros 5.1 y 5.2) y características agronómicas como rendimiento, altura de planta, resistencia a enfermedades, etc. (López et al. 1998; Muñoz 2003 y Gil et al. 2004a), (Estudios de Caso 5.9.1 y 5.9.2). Además, en el estado se cultivan diversas variedades mejoradas (SAGARPA 2008b).
CAPÍTULO 5 • DIVERSIDAD DE LOS RECURSOS GENÉTICOS

Figura 5.3 Importancia del maíz y una muestra de la amplia gama de formas de la mazorca y de colores de grano (Foto: Abel Gil Muñoz).

Cuadro 5.1 Número de variedades de maíz colectadas y evaluadas en las microregiones del estado de Puebla exploradas en 1997.

<table>
<thead>
<tr>
<th>Microregión</th>
<th>Colectadas</th>
<th>Total</th>
<th>Color Blanco</th>
<th>Color Azul</th>
<th>Color Amarillo</th>
<th>Color Pinto</th>
<th>Otros Colores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayotuxco</td>
<td>227</td>
<td>198</td>
<td>166</td>
<td>4</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Izúcar</td>
<td>100</td>
<td>61</td>
<td>51</td>
<td>5</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Tetela</td>
<td>100</td>
<td>96</td>
<td>73</td>
<td>6</td>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quecholac</td>
<td>315</td>
<td>315</td>
<td>288</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Valle de Puebla</td>
<td>136</td>
<td>136</td>
<td>96</td>
<td>16</td>
<td>2</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Zaragoza</td>
<td>200</td>
<td>194</td>
<td>161</td>
<td>6</td>
<td>26</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Zacatán</td>
<td>136</td>
<td>127</td>
<td>80</td>
<td>24</td>
<td>20</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Mazapiltepec</td>
<td>136</td>
<td>136</td>
<td>96</td>
<td>16</td>
<td>2</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Libres</td>
<td>200</td>
<td>183</td>
<td>144</td>
<td>9</td>
<td>20</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>G. Victoria</td>
<td>80</td>
<td>77</td>
<td>71</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Esperanza</td>
<td>100</td>
<td>94</td>
<td>88</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Serdán</td>
<td>294</td>
<td>294</td>
<td>280</td>
<td>8</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tlachichuca</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tlahuapan</td>
<td>200</td>
<td>191</td>
<td>135</td>
<td>35</td>
<td>6</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>La Malinche</td>
<td>90</td>
<td>85</td>
<td>72</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>TOTALES</td>
<td>2 514</td>
<td>2 387</td>
<td>2 001</td>
<td>150</td>
<td>136</td>
<td>65</td>
<td>35</td>
</tr>
</tbody>
</table>

Cuadro 5.2 Número de accesiones de maíz presentes por nivel de precocidad en cada una de las microrregiones del estado de Puebla exploradas en 1997.

<table>
<thead>
<tr>
<th>Microrregión</th>
<th>Intervalos para DAFF*</th>
<th>Nivel de Precocidad**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>Ayotoxco</td>
<td>60-77</td>
<td>198</td>
</tr>
<tr>
<td>Tetela</td>
<td>104-148</td>
<td>50</td>
</tr>
<tr>
<td>Valle de Puebla</td>
<td>82-111</td>
<td>30</td>
</tr>
<tr>
<td>Zaragoza</td>
<td>113-135</td>
<td>108</td>
</tr>
<tr>
<td>Zacatlán</td>
<td>99-134</td>
<td>5</td>
</tr>
<tr>
<td>Mazapiltepec</td>
<td>88-125</td>
<td>81</td>
</tr>
<tr>
<td>Libres</td>
<td>91-127</td>
<td>1</td>
</tr>
<tr>
<td>G. Victoria</td>
<td>100-126</td>
<td>68</td>
</tr>
<tr>
<td>Esperanza</td>
<td>106-124</td>
<td>94</td>
</tr>
<tr>
<td>Serdán</td>
<td>102-134</td>
<td>53</td>
</tr>
<tr>
<td>Tlachichuca</td>
<td>110-125</td>
<td>200</td>
</tr>
<tr>
<td>Tlahuapan</td>
<td>112-136</td>
<td>88</td>
</tr>
<tr>
<td>La Malinche</td>
<td>116-165</td>
<td>16</td>
</tr>
</tbody>
</table>

*D AFFF = Días al 50 % de Floración Femenina
**UP = Ultraprecoc (60-81 DAFF); P = Precoc (82-103 DAFF); I = Intermedio (104-125 DAFF); T = Tardío (126-147 DAFF); UT = Ultratardío (>147 DAFF)

En Puebla se han reportado diferentes razas de maíz entre las que destacan el Chalqueño, Cónico, los Elotes Cónicos y el Cacahuacintle (Wellhausen et al. 1951; Cervantes y Mejía 1984; Muñoz 2003);

Finalmente, en el estado existe diversidad utilitaria, pues cada agricultor maneja entre una y siete poblaciones nativas que presentan no sólo una alta aptitud para la elaboración de alimentos a nivel tradicional y como rastrojo –entre otros usos–, sino que también tienen potencial a nivel industrial, como la elaboración de pozole o la obtención de pigmen-
tos, como las antocianinas (Aceves et al., 2002; Gil 2000; Gil et al. 2002; Gil et al. 2004a; Gil et al. 2004b; G. y Álvarez 2005; Gil et al. 2007; Rangel-Meza et al. 2004) (Figura 5.4).

Sorgo (Sorghum bicolor)

El sorgo es una especie introducida a México en la década de los años setenta. En Puebla su cultivo se concentra principalmente en los DDR de Izúcar de Matamoros y de Cholula, con el 96.7 y el 3.1 % respectivamente, de las 13 300 ha sembradas anualmente (SAGARPA 2005; Pastrana 2007). Las variedades que se usan actualmente son mejoradas, procedentes de la industria privada y eventualmente de instituciones nacionales de investigación. El cultivo se destina a la alimentación del ganado.

Frijol (Phaseolus vulgaris)

En Puebla se cultivaron en el año de 2006 un total de 81 097 ha, lo que generó una producción de
57 665 t (SAGARPA 2006). Este cultivo alberga una amplia diversidad de tamaños, formas y colores de semillas. En este sentido, Díaz-Ruiz et al. (2008), estudiaron 122 colectas procedentes de 27 comunidades del estado y encontraron que el tamaño de semilla de frijol predominante, en base al peso de 100 semillas, fue el mediano (25-40 g), seguido del grande (>40 g) y el pequeño (< 25 g). Las formas registradas fueron: truncada, ovoide, arriñonada y cuboide. Los colores de semilla identificados fueron 14, predominando el negro (25 %), crema (15 %), amarillo mostaza (14 %) y castaño (14 %). Se detectaron pocos frijoles de grano rojo o gris. Es importante resaltar que algunos agricultores conservan y siembran poblaciones formadas por granos de diferentes colores como una estrategia para enfrentar las fluctuaciones ambientales. En trabajos desarrollados en la Cordillera del Tentzo, Pue., Herrera et al. (1993) y Díaz-Ruiz et al. (2005) identificaron frijoles de “mata” y de “guía”, que son aquéllos con hábitos de crecimiento determinado e indeterminado y que además presentan variaciones de 65 a 92 días a floración, respectivamente. Es posible que en el resto del Estado se encuentren patrones de variación similares. En lo que respecta a las variedades mejoradas, se dispone de las siguientes: Azufrado Tapatio, Bayo INIFAP, Negro 150, Negro Otomi, Negro Perla, Pinto Villa, Bayo Mecentral, Bayo Victoria, Bayomex, Flor de Durazno y Flor de Mayo M-38 (SAGARPA 2008b).

Haba (Vicia faba)

Puebla es el principal productor de grano seco de haba en México (Figura 5.5), ya que aporta el 64 % a la producción nacional. El haba para grano se cultiva en más de 16 000 ha (la mayoría en el Valle de Serdán) y el haba verde en 1 559 ha, en las regiones de Serdán, Atlixco y Puebla (SAGARPA 2008a). Su rendimiento promedio es de 1.13 t·ha⁻¹. La selección de semilla practicada por el agricultor ha derivado en la formación de poblaciones locales, adaptadas a necesidades y condiciones ambientales específicas (Díaz-Bautista et al. 2008). En Puebla se reconocen seis tipos de haba: Blanca, Morada, Criolla Amarilla, Tarragona, Parraleña y Mestiza o Cochinera (Herrera-Cabrera 2005). El uso de tal diversidad está en función del conocimiento del ambiente y de las necesidades que los campesinos deben satisfacer (Díaz-Bautista y Herrera-Cabrera 2004). No obstante, por su elevada demanda en el mercado, en las zonas altas se destina mayor superficie al cultivo de las variedades Tarragona y Criolla Amarilla. Las variedades que se destinan básicamente al autoconsumo son la Blanca, Morada, Parraleña, Mestiza y Cochinera (Herrera-Cabrera et al. 2002).

Hortalizas

En el estado de Puebla se cultiva una gran variedad de especies hortícolas, tanto de clima templado como tropical. Según SAGARPA (2008a), en el 2007 se reportaron 127 826 ha sembradas con hortalizas, con un valor de la producción superior a los 2 206 millones de pesos (Cuadro 5.3). Predomina la siembra de semilla mejorada en las especies de mayor valor comercial, aunque también es común que se siembren variedades criollas o nativas, sobre todo en las hortalizas de consumo regional.

Entre las especies más importantes y con potencial, se encuentra el chile, que pertenece a la familia las Solanáceas y al género Capsicum, en el que se han descrito 30 especies (Bosland y Votava 2000, citados por Luna et al. 2007). De éstas, se han originado C. annuum, C. chinense, C. frutescens, C. pubescens y C. baccatum, que son las cinco especies domesticadas que se cultivan en el mundo; las primeras cuatro se cultivan en nuestro país (Castro et al. 2007). México es considerado como el centro de origen, diversidad y domesticación de C. annuum, que es la especie más importante en el mundo y que en Puebla incluye a la
Figura 5.5 La diversidad genética del haba (*Vicia faba* L.) es importante en Puebla, y se cultiva principalmente en los Valles Altos (Foto: B. Edgar Herrera Cabrera).

Cuadro 5.3 Principales hortalizas cultivadas en el estado de Puebla en 2007.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Superficie sembrada (ha)</th>
<th>Superficie cosechada (ha)</th>
<th>Producción (t)</th>
<th>Rendimiento (t·ha⁻¹)</th>
<th>Valor de la producción (miles de pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acelga</td>
<td>261</td>
<td>243</td>
<td>2 373</td>
<td>9.76</td>
<td>3 909.56</td>
</tr>
<tr>
<td>Ajo</td>
<td>446</td>
<td>421</td>
<td>2 335</td>
<td>5.55</td>
<td>27 239.50</td>
</tr>
<tr>
<td>Alcachofa</td>
<td>40</td>
<td>40</td>
<td>520</td>
<td>13</td>
<td>1 300.00</td>
</tr>
<tr>
<td>Alhelí</td>
<td>376</td>
<td>376</td>
<td>3 113</td>
<td>8.28</td>
<td>5 487.20</td>
</tr>
<tr>
<td>Apio</td>
<td>233</td>
<td>201</td>
<td>4 013</td>
<td>19.96</td>
<td>9 404.69</td>
</tr>
<tr>
<td>Betabel</td>
<td>418</td>
<td>383</td>
<td>7 510</td>
<td>19.61</td>
<td>14 688.82</td>
</tr>
<tr>
<td>Brócoli</td>
<td>1 347</td>
<td>1 322</td>
<td>21 092</td>
<td>15.96</td>
<td>68 694.90</td>
</tr>
<tr>
<td>Calabacía</td>
<td>4 546</td>
<td>4 489</td>
<td>52 470</td>
<td>11.69</td>
<td>167 070.40</td>
</tr>
<tr>
<td>Calabaza</td>
<td>193</td>
<td>193</td>
<td>1 839</td>
<td>9.53</td>
<td>2 863.69</td>
</tr>
<tr>
<td>Calabaza (semilla)</td>
<td>566</td>
<td>564</td>
<td>211</td>
<td>0.38</td>
<td>3 904.74</td>
</tr>
<tr>
<td>Camote</td>
<td>199</td>
<td>199</td>
<td>2 904</td>
<td>14.59</td>
<td>8 712.00</td>
</tr>
<tr>
<td>Cebolla</td>
<td>3 681</td>
<td>3 649</td>
<td>61 503</td>
<td>16.86</td>
<td>190 886.70</td>
</tr>
<tr>
<td>Chicharo</td>
<td>2 206</td>
<td>1 182</td>
<td>5 617</td>
<td>4.75</td>
<td>28 484.05</td>
</tr>
<tr>
<td>Chile verde</td>
<td>2 941</td>
<td>2 827</td>
<td>9 187</td>
<td>3.25</td>
<td>186 927.80</td>
</tr>
</tbody>
</table>
Continúa cuadro 5.3

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Superficie sembrada (ha)</th>
<th>Superficie cosechada (ha)</th>
<th>Producción (t)</th>
<th>Rendimiento (t-ha(^{-1}))</th>
<th>Valor de la producción (miles de pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilantro</td>
<td>3 085</td>
<td>2 986</td>
<td>26 150</td>
<td>8.76</td>
<td>49 508.99</td>
</tr>
<tr>
<td>Col (repollo)</td>
<td>2 055</td>
<td>1 971</td>
<td>68 108</td>
<td>34.56</td>
<td>107 656.90</td>
</tr>
<tr>
<td>Col de bruselas</td>
<td>34</td>
<td>34</td>
<td>735</td>
<td>21.64</td>
<td>4 221.37</td>
</tr>
<tr>
<td>Coliflor</td>
<td>876</td>
<td>830</td>
<td>16 337</td>
<td>19.68</td>
<td>42 632.75</td>
</tr>
<tr>
<td>Ejote</td>
<td>1 256</td>
<td>1 243</td>
<td>11 305</td>
<td>9.1</td>
<td>39 497.95</td>
</tr>
<tr>
<td>Elore</td>
<td>14 088</td>
<td>14 088</td>
<td>135 506</td>
<td>9.62</td>
<td>160 465.10</td>
</tr>
<tr>
<td>Epazote</td>
<td>15</td>
<td>15</td>
<td>150</td>
<td>10</td>
<td>225.00</td>
</tr>
<tr>
<td>Espinaca</td>
<td>451</td>
<td>413</td>
<td>3 745</td>
<td>9.07</td>
<td>5 178.35</td>
</tr>
<tr>
<td>Frijol</td>
<td>71 471</td>
<td>70 157</td>
<td>47 324</td>
<td>0.68</td>
<td>350 507.90</td>
</tr>
<tr>
<td>Haba verde</td>
<td>2 474</td>
<td>2 474</td>
<td>16 443</td>
<td>6.65</td>
<td>33 852.53</td>
</tr>
<tr>
<td>Hierbabuena</td>
<td>8</td>
<td>8</td>
<td>68</td>
<td>8.5</td>
<td>204.00</td>
</tr>
<tr>
<td>Huauzontle</td>
<td>186</td>
<td>186</td>
<td>2 036</td>
<td>10.95</td>
<td>5 188.16</td>
</tr>
<tr>
<td>Jamaica</td>
<td>110</td>
<td>110</td>
<td>32</td>
<td>0.3</td>
<td>1 705.80</td>
</tr>
<tr>
<td>Jicama</td>
<td>258</td>
<td>258</td>
<td>5 534</td>
<td>21.45</td>
<td>18 033.75</td>
</tr>
<tr>
<td>Lechuga</td>
<td>2 927</td>
<td>2 786</td>
<td>63 656</td>
<td>22.85</td>
<td>132 009.40</td>
</tr>
<tr>
<td>Manzanilla</td>
<td>52</td>
<td>52</td>
<td>345</td>
<td>6.64</td>
<td>853.80</td>
</tr>
<tr>
<td>Melón</td>
<td>2</td>
<td>2</td>
<td>28</td>
<td>14</td>
<td>126.00</td>
</tr>
<tr>
<td>Nopalitos</td>
<td>134.5</td>
<td>112</td>
<td>7 959</td>
<td>70.75</td>
<td>21 902.50</td>
</tr>
<tr>
<td>Pápalo</td>
<td>89</td>
<td>89</td>
<td>356</td>
<td>4</td>
<td>808.00</td>
</tr>
<tr>
<td>Pepino</td>
<td>390</td>
<td>388</td>
<td>7 289</td>
<td>18.79</td>
<td>17 705.90</td>
</tr>
<tr>
<td>Perejil</td>
<td>30</td>
<td>30</td>
<td>526</td>
<td>17.56</td>
<td>1 533.24</td>
</tr>
<tr>
<td>Pipicha</td>
<td>60</td>
<td>60</td>
<td>180</td>
<td>3</td>
<td>406.50</td>
</tr>
<tr>
<td>Poro</td>
<td>146</td>
<td>141</td>
<td>1 697</td>
<td>12.04</td>
<td>4 046.20</td>
</tr>
<tr>
<td>Rábano</td>
<td>1 387</td>
<td>1 321</td>
<td>10 632</td>
<td>8.05</td>
<td>15 609.98</td>
</tr>
<tr>
<td>Sandía</td>
<td>52</td>
<td>52</td>
<td>1 000</td>
<td>19.23</td>
<td>6 640.00</td>
</tr>
<tr>
<td>Tomate rojo (jitomate)</td>
<td>933</td>
<td>927</td>
<td>17 523</td>
<td>18.9</td>
<td>139 632.40</td>
</tr>
<tr>
<td>Tomate verde</td>
<td>5 208</td>
<td>5 126</td>
<td>54 011</td>
<td>10.54</td>
<td>168 197.20</td>
</tr>
<tr>
<td>Zanahoria</td>
<td>2 594</td>
<td>2 588</td>
<td>66 881</td>
<td>25.84</td>
<td>158 646.10</td>
</tr>
<tr>
<td>Total</td>
<td>127 826</td>
<td>124 539</td>
<td>740 258</td>
<td>576.32</td>
<td>2 206 570.00</td>
</tr>
</tbody>
</table>

mayoría de las variedades: Poblano (Figura 5.6), Miahuatéco, Jalapeño, Serrano, Chiltepin, Cera, Tampiqueño, Habanero, Loco, Güero y Miracielo. Las variedades que destacan con la mayor superficie cultivada y producción son el Serrano (2 223 ha y 31 122 t) y el Poblano (600 ha y 4 800 t). El jitomate (Solanum lycopersicum L.) es una especie anual que pertenece a la familia de las solanáceas y constituye una fuente importante de vitaminas, minerales y carotenos como el licopeno (Razdan y Mattoo 2007). En Puebla se cultivan los tipos de jitomate bala, saladette, ríñon, cherry o cereza y uva. Los tres últimos son nativos del estado y representan una fuente importante de genes que pudieran incorporarse a los materiales comerciales para mejorar atributos como calidad, rendimiento, resistencia a factores bióticos y abióticos, entre otros. Aun cuando el cultivo de los diferentes tipos de jitomate se distribuye en gran parte del Estado, anualmente se siembran 1 380 ha de los tipos bala y saladette (SDR 2007a). Los principales municipios productores se encuentran en la región Mixteca y la Sierra Norte de Puebla.

El cilantro (Coriandrum sativum L.) es una herbácea anual que pertenece a la familia Apiaceae (umbelíferas). De acuerdo con SAGARPA (2008a), en México se siembran casi 6 000 ha con cilantro, de las cuales casi el 50 % se localizan en Puebla. Los principales municipios productores de cilantro se ubican en los DDR de Libres, Cholula y Tecamachalco. La diversidad de esta especie consta principalmente de variedades criollas o nativas, que han sido seleccionadas por los agricultores para la producción de un mayor número de hojas; esta selección ha sido practicada a partir de algunas variedades mejoradas que han sido introducidas de Canadá, principalmente.

El cuautemoc (Solanum glaucences Zucc.) es una especie perenne silvestre ampliamente distribuida en la mixteca baja poblana y que se encuentra en proceso de domesticación (Vargas 1998). Esta especie es apreciada por su fruto y también se le atribuyen propiedades medicinales. Actualmente, el aprovechamiento de esta planta se basa en la recolección y en el cultivo de traspato y los campesinos reconocen una gran diversidad de frutos y formas de las plantas, requiriéndose trabajos de investigación enca-

Ornamentales

Puebla es el primer productor nacional de rosa (Rosa spp.) a cielo abierto, destacando además en la producción de especies nativas como el nardo (Polianthes tuberosa L.), pata de elefante (Beaucarnea spp.) y algunas orquídeas (Familia Orchidaceae), así como en la producción de especies introducidas como el alcatraz (Zantedeschia aethiopica), agapando (Agapanthus umbellatus), ave del paraíso (Strelitzia spp.), bugambilía (Bougainvillea), eucalipto dólár (Eucalyptus cinerea), floripondio (Brugmansia spp.), gardenia (Gardenia spp.), gerbera (Gerbera spp.), helechos (Division Pterophyta), palma camedor (Chamaedorea spp.) y palma real (Familia Arecaceae), entre otros. El aprovechamiento de especies ornamentales tiene lugar en las regiones de Atlixco, San Martín Texmelucan y Huachichinango, principalmente (SDR 2007c).

Cultivos de uso industrial

Cebada maltera (Hordeum vulgare L.): una de las cadenas agroindustriales de mayor importancia en Puebla es la de cebada-malta-cerveza, ya que en el 2007 se sembraron 24 187 ha, que se concentraron en los municipios de Cuyoaco, Libres, Tepeyahualco, Oriental, Ocotepec, Nopalucan y Guadalupe Victoria (DDR de Libres) y de Chignahuapan e Ixtacaxtitlán.
Forrajes

Los cultivos forrajeros de corte de mayor importancia a nivel estatal son la alfalfa (Medicago sativa ssp. sativa), la avena (Avena sativa L.) y el maíz forrajero, de los que en el 2007 se sembraron 17 500, 7 532 y 4 012 ha, respectivamente (SIAP 2008). La alfalfa y el maíz forrajero se producen en condiciones de riego, mientras que la avena forrajera se cultiva en temporal (SIAP 2008). La diversidad genética de estos tres cultivos se basa, en su mayoría, en variedades mejoradas, sobre todo para zonas de alto potencial productivo. En alfalfa se distinguen tres grupos principales de diversidad: a) variedades importadas de compañías comercializadoras de semillas con buena aceptación por parte de los productores; b) variedades de uso tradicional local como “Atlixqueña” y “Oaxaqueña”, y c) las alfalfas criollas o nativas, que son genotipos adaptados localmente que se han cultivado por siglos. No existe aprovechamiento de otras subespecies de alfalfa como la falcata, varia, coerulea, tunetana y glutinosa, que podrían ser buenas opciones para las zonas restrictivas donde no prospera la subespecie sativa (Guerrero et al. 2008).

Las variedades e híbridos de maíz forrajero provienen en su mayoría de compañías comercializadoras

Cuadro 5.4 Principales especies industriales cultivadas en el estado de Puebla en 2007.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Superficie sembrada (ha)</th>
<th>Superficie cosechada (ha)</th>
<th>Producción (t)</th>
<th>Rendimiento (t·ha$^{-1}$)</th>
<th>Valor de la producción (Miles de Pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranto</td>
<td>1 365.0</td>
<td>1 365.0</td>
<td>2 357.7</td>
<td>1.73</td>
<td>15 471.6</td>
</tr>
<tr>
<td>Cacahuate</td>
<td>7 336.5</td>
<td>7 335.5</td>
<td>10 729.8</td>
<td>1.46</td>
<td>83 857.3</td>
</tr>
<tr>
<td>Café cereza</td>
<td>74 321.5</td>
<td>74 321.0</td>
<td>256 398.6</td>
<td>3.45</td>
<td>691 946.3</td>
</tr>
<tr>
<td>Caña de azúcar</td>
<td>13 095.0</td>
<td>13 095.0</td>
<td>1 614 072.0</td>
<td>123.26</td>
<td>680 596.3</td>
</tr>
<tr>
<td>Caña de azúcar otro uso</td>
<td>433.0</td>
<td>433.0</td>
<td>18 941.6</td>
<td>43.74</td>
<td>30 845.2</td>
</tr>
<tr>
<td>Cebada grano</td>
<td>24 187.0</td>
<td>23 441.7</td>
<td>44 040.4</td>
<td>1.88</td>
<td>98 473.7</td>
</tr>
<tr>
<td>Colza</td>
<td>10.0</td>
<td>10.0</td>
<td>151.6</td>
<td>15.16</td>
<td>169.04</td>
</tr>
<tr>
<td>Jamaica</td>
<td>110.0</td>
<td>110.0</td>
<td>32.8</td>
<td>0.30</td>
<td>1705.8</td>
</tr>
<tr>
<td>Sábila</td>
<td>99.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tabaco</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>1.00</td>
<td>180.0</td>
</tr>
<tr>
<td>Trigo grano</td>
<td>3 492.0</td>
<td>3 423.5</td>
<td>5 708.4</td>
<td>1.67</td>
<td>9 410.9</td>
</tr>
<tr>
<td>Vainilla</td>
<td>41.4</td>
<td>21.9</td>
<td>22.4</td>
<td>1.02</td>
<td>2 068.5</td>
</tr>
</tbody>
</table>

de semillas, nacionales y extranjeras, aptas para so-
portar altas densidades de población y destinados
principalmente al ensilaje. De estas variedades, en
los Valles Altos, los agricultores han derivado por
selección generaciones avanzadas como los tipos
“Campeón” y “Chalqueño”. Otra fuente de diver-
sidad para forraje son las variedades locales o nati-
vas. De ellas se obtiene materia verde para la ali-
mentación de rumiantes, sin afectar la producción
de grano. En los Valles Altos se ha observado que
algunas variedades locales presentan plantas con
nervaduras de color café (Guerrero et al. 2007), ca-
racterística asociada al menor contenido de lignina,
compuesto limitante de la digestión de la materia
seca en rumiantes.

Otro grupo de especies forrajeras son algunas le-
guminosas naturalizadas y nativas. Entre las las pri-
meras, en la región templada se tiene a la carretilla

Cuadro 5.5 Principales especies industriales reportadas para el estado de Puebla.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Superficie Sembrada (ha)</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agave mezcalero</td>
<td>1184</td>
<td>12</td>
</tr>
<tr>
<td>Agave lechuguilla</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Agave pichomel</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Algodón</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Árbol del hule</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>Árbol del neem</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Cacao</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Caña de azúcar</td>
<td>15 622</td>
<td>22</td>
</tr>
<tr>
<td>Café</td>
<td>75 011</td>
<td>55</td>
</tr>
<tr>
<td>Candelilla</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Carrizo</td>
<td>1 300</td>
<td>46</td>
</tr>
<tr>
<td>Casahuaste</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Coyol</td>
<td>nd</td>
<td>Nd</td>
</tr>
<tr>
<td>Estropajo</td>
<td>27</td>
<td>17</td>
</tr>
<tr>
<td>Jamaica</td>
<td>453</td>
<td>12</td>
</tr>
<tr>
<td>Jonote</td>
<td>800</td>
<td>55</td>
</tr>
<tr>
<td>Maguey pulquero</td>
<td>3 280</td>
<td>46</td>
</tr>
<tr>
<td>Palma dulce</td>
<td>5 000</td>
<td>37</td>
</tr>
<tr>
<td>Pita</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Sábila</td>
<td>99</td>
<td>26</td>
</tr>
<tr>
<td>Tabaco</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Vainilla</td>
<td>390</td>
<td>31</td>
</tr>
</tbody>
</table>

nd: no disponible.

Frutales

En México, los frutales ocupan el 10 % de la superficie cultivada, con 64 especies que se cultivan a escala comercial y de las cuales casi la mitad son introducidas (Borys y Leszczyńska-Borys 2001); algunas de estas especies se combinan entre sí en las huertas familiares de traspatio o se intercalan con diversos cultivos, y frutales silvestres de recolección o en proceso de domesticación (Leszczyńska-Borys y Borys 2002).

En el estado de Puebla, durante 2007 se cultivaron 60 998 ha con 29 especies de frutales que produjeron 2 814 974 t, con un valor de la producción de 1 584.2 millones de pesos (INEGI 2007). Las especies más importantes en cuanto a superficie cultivada fueron naranja (Citrus sinensis), manzana (Malus pumila) y ciruela (Prunus salicina), con arrededor de 17 250, 13 100 y 7 640 ha, respectivamente. Otras especies introducidas consideradas importantes son el limón (Citrus spp.), durazno (Prunus persica), pera (Pyrus communis), plátano (Musa spp.), tangerina (Citrus spp.), macadamia (Macadamia sp.), toronja (Citrus paradisi), litchi (Litchi chinensis), papaya (Carica papaya), mango (Mangifera indica), lima (Citrus sp.), maney (Calocarpum sp.), arándano (Vaccinium corymbosum), nogal (Juglans regia), mandarina (Citrus sp.), chabacano (Prunus armeniaca), maracuyá (Passiflora sp.), higo (Ficus carica) y uva (Vitis vinifera).

Algunas especies importantes que son consideradas nativas de Puebla o con centro de domesticación o diversificación en el estado son: guayacán (Persea americana), Guayaba (Psidium guajava), pitaya (Stenocereus stellatus), pitahaya (Hylocereus undatus), tejocote (Crateagus pubescens) (Figura 5.7), tuna (Opuntia sp.) y zapote (Diospyros digyna) entre otros.

En la Sierra Norte de Puebla se reporta una relación de más de 80 especies de frutales que son aprovechadas por los distintos grupos étnicos que habitan esa región (Leszczyńska-Borys y Borys 2002). Por su parte Martínez (2007) y Basurto et al. (2008) hacen referencia a un total de 107 especies, 76 géneros y 42 familias, de las cuales 70 especies son nativas y 37 introducidas. Según Martínez (2007), las familias con el mayor número de especies son Rosaceae (manzano, peral, tejocote, durazno, almendro, chabacano, ciruelo, capulin, etc., 17 especies), Rutaceae (citriscos y zapote blanco, siete especies), Fabaceae o Leguminosae (tamarindo, jinicuil, mezquite, guamúchil, etc., seis especies) y Passifloraceae (maracuyá, granada china y otras pasifloras, cinco especies), en tanto que las especies con mayor número de variedades son plátano (Musa ssp., 30 variedades), durazno (Prunus pérsea, 30 variedades), manzana (Malus pumila, 25 variedades), ciruela (Prunus salicina, 24 variedades), aguacate (Persea americana, 21 variedades), naranja (Citrus sinensis, 19 variedades), mandarina (Citrus reticulata, 16 variedades) y guayaba (Psidium guajava, 14 variedades). La importancia y diversidad de frutales en el estado de Puebla se resalta en una compilación que describe más de 60 especies (SDR 2007b).

ESPECIES DE RECOLECCIÓN

Adriana Delgado Alvarado, Luz del Carmen Lagunes Espinoza, Pedro Antonio López.

En los diferentes tipos de vegetación presentes en el estado de Puebla crecen una gran variedad de plantas, silvestres y aves que son recolectadas y utilizadas.
por los habitantes de comunidades indígenas y mestizas. Estos recursos fitogenéticos se localizan en los bosques (que cubren el 9.3 % de la superficie total), las selvas (4 %), los matorrales (7 %), los pastizales (6.9 %), la vegetación secundaria (21.9 %) y otros tipos de vegetación (0.6%) (INEGI 2007).

Medicinales

El conocimiento, distribución y uso de las plantas medicinales en el estado de Puebla está muy arraigado, debido a la diversidad cultural, ecológica y biológica que alberga. Sobresalen algunas comunidades de la reserva de la Biosfera Valle de Tehuacán-Cuicatlán, que es reconocida como una de las áreas protegidas más importantes de México, por su enorme riqueza biológica y altos niveles de endemismo (Dávila et al. 2002). El Cuadro 5.6 presenta la diversidad de familias y especies de plantas con diferentes usos en la región de Zapotitlán Salinas, donde se reportan 19 categorías de plantas útiles, destacando las medicinales y ornamentales con 98 y 94 especies, que representan el 22.5 % y 21.5 %, respectivamente (Paredes-Flores et al. 2007).

En la localidad de San Rafael, municipio de Coxcatlán, dentro de la Reserva de la Biosfera Valle de Tehuacán-Cuicatlán, se registraron 46 especies medicinales, de las cuales 47.8 % son silvestres, 28.2 % se cultivan en los huertos familiares y 23.9 % son adquiridas en los mercados populares (Cuadro 5.7) (Canales et al. 2006).

En la Sierra Norte de Puebla, Martínez et al. (2007) demostraron que los agroecosistemas cafetaleros son un importante reservorio de biodiversidad y de recursos genéticos de importancia antropocéntrica. En ese estudio dieron a conocer un inventario sobre la flora útil de los cafetales, destacando las plantas medicinales con 173 especies y las ornamentales con 47. El Cuadro 5.8 concentra algunas de las familias y especies reportadas. Adicionalmente, la SDR (2007f) reporta una gran diversidad de especies medicinales con potencial ante la demanda nacional e internacional, además de los principales municipios productores de esas especies (Cuadro 5.9).

Cuadro 5.6 Familias y especies con uso ornamental y/o medicinal en Zapotitlán Salinas, Puebla.

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Manejo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justicea mexicana Rose</td>
<td>Mutle, kiwi</td>
<td>Ornamental, medicinal</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Ruella hirsuta-glandulosa Hemsl.</td>
<td>Betunia de monte</td>
<td>Ornamental</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Agavaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agave atrovires Karw.</td>
<td>Maguey manso</td>
<td>Medicinal, bebida alcohólica</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Agave potatotrum Zucc.</td>
<td>Maguey papolome</td>
<td>Medicinal</td>
<td>Fomentada silvestre</td>
</tr>
<tr>
<td>Agave stricta Salm-Dyck</td>
<td>Pelo de ángel</td>
<td>Comestible, ornamental</td>
<td>Silvestre trasplante</td>
</tr>
<tr>
<td>Aizoaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptenia cordiformis (L.f.) Schwante</td>
<td>Siempre viva flor rosa</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaranthus sp.</td>
<td>Morada</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Gomphrena decumbens Jacq.</td>
<td>Cabezona, gobernadora</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schinus molle L.</td>
<td>Cohuino, jovino, pirul</td>
<td>Medicinal, forrajera, combustible</td>
<td>Tolerada</td>
</tr>
</tbody>
</table>
Tabla 5.6

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Manejo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apocynaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerium oleander L.</td>
<td>Adelfa</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Plumeria rubra L.</td>
<td>Cacalasuche</td>
<td>Ornamental</td>
<td>Silvestre, protegida</td>
</tr>
<tr>
<td>Vallesia glabra (Cav.) Link</td>
<td>Chinto borrego</td>
<td>Ornamental, comestible</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Araceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthurium andraeanum Linden</td>
<td>Anturio</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Anthurium crassinervium (Jacq.) Schott</td>
<td>Muchacha</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Caladium bicolor (Ait.) Vent.</td>
<td>Cuernos de chivo</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Dieffenbachia picta Schott</td>
<td>Hojas pintas</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Monstera deliciosa Liebm.</td>
<td>Costilla de Adán</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Scindapsus aureus Engl.</td>
<td>Teléfono</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Zantedeschia aethiopica (L.) Sprengel</td>
<td>Alcatraz</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Arecaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brahea dulcis (Kunth) Mart.</td>
<td>Palma</td>
<td>Medicinal, ornamental</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Brahea nitida André</td>
<td>Pálmón</td>
<td>Ornamental</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Cocos nucifera L.</td>
<td>Palma de cocos</td>
<td>Ornamental, comestible</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Howea fortesiana Becc.</td>
<td>Palma</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Pseudophoenix sp.</td>
<td>Palma</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Asclepiadaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stapelia variegata N.E.Br.</td>
<td>Espinacito</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Asphodelaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aloe vera Burm.</td>
<td>Sábila</td>
<td>Medicinal, ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Asteraceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia absinthium L.</td>
<td>Ajenjo</td>
<td>Medicinal</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Artemisia ludoviciana (Nutt.) subsp. mexicana (Willd.) Keck</td>
<td>Istaifa</td>
<td>Medicinal</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Brickellia veronicifolia (Kunth) A. Gray</td>
<td>Estrellíia</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Calendula officinalis L.</td>
<td>Mercadela</td>
<td>Medicinal</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Chrysanthemum indicum L.</td>
<td>Crisantemo</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Dahlia sp.</td>
<td>Juarigo</td>
<td>Ornamental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Gymnolaena oaxacana (Greenman) Rydb.</td>
<td>Molito</td>
<td>Medicinal</td>
<td>Silvestre protegida</td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 5.6

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Manejo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnosperma glutinosum (Sprenge) Less.</td>
<td>Popote, kantakaxi</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Heterotheca inuloides Cass.</td>
<td>Arnica</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Montanoa mollissima Brongn. ex Groenl.</td>
<td>Cuapiojo de monte</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Montanoa tomentosa Cerv.</td>
<td>Cuapiojo</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Parthenium tomentosum DC.</td>
<td>Hierba de hormiga</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Sanvitalia procumbens Lam.</td>
<td>Ojo de gallo</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Senecio salignus DC.</td>
<td>Asomiate, ntasiokorva</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Sonchus oleraceus L.</td>
<td>Achicoria</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Tagetes erecta L.</td>
<td>Cempasúchil</td>
<td>Ornammental</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Tagetes sp.</td>
<td>Flor de ratón</td>
<td>Ornammental</td>
<td>Silvestre fomentada</td>
</tr>
<tr>
<td>Taraxacum officinale Wigg.</td>
<td>Diente de león</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Tithonia tubifloris (Jacq.) Cass.</td>
<td>Acahual</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Zinnia peruviana (L.) L.</td>
<td>Gallo</td>
<td>Medicinal, ornamental</td>
<td>Silvestre trasplantada</td>
</tr>
<tr>
<td>Bignoniaceae</td>
<td>Tecoma stans (L.) Juss. ex Kunth</td>
<td>Campanilla amarilla</td>
<td>Ornammental, forrajera</td>
</tr>
<tr>
<td>Boraginaceae</td>
<td>Heliotropium angiospermum Murray</td>
<td>Hierba del alacran</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>Lepidium virginicum L.</td>
<td>Lentejilla, mitchichi</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Bromeliaceae</td>
<td>Tillandsia recurvata L.</td>
<td>Pasle, Paxtle</td>
<td>Medicinal, forrajera</td>
</tr>
<tr>
<td>Tillandsia dasyliriifolia Baker</td>
<td>Soluche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burseraceae</td>
<td>Bursera aperta Ramirez</td>
<td>Copalaque</td>
<td>Medicinal, resina, látex</td>
</tr>
<tr>
<td>Bursera schlechtendalii Engl.</td>
<td>Copalillo</td>
<td>Medicinal, resina, látex</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Cactaceae</td>
<td>Ferocactus latispinus (Haw.) Britton & Rose var. spiralis (Karw. ex Pfeiff.) N.P. Taylor</td>
<td>Biznaga de dulce</td>
<td>Ornamental, forrajera, comestible</td>
</tr>
<tr>
<td>Hylcereus undatus (Haw.) Britton & Rose</td>
<td>Pitahaya</td>
<td>Medicinal, comestible</td>
<td>Cultivada</td>
</tr>
<tr>
<td>Mammillaria carnea Zucc. ex Pfeiffer</td>
<td>Biznaga</td>
<td>Medicinal, ornamental</td>
<td>Silvestre, protegida</td>
</tr>
<tr>
<td>Familia/especie</td>
<td>Nombre común</td>
<td>Uso</td>
<td>Manejo</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Mammillaria sphacelata C. Martius</td>
<td>Biznaga</td>
<td>Ornamental</td>
<td>Silvestre, protegida</td>
</tr>
<tr>
<td>Opuntia decumbens Salm-Dyck</td>
<td>Nopal de coyote</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Pachycereus marginatus (DC.) Britton & Rose</td>
<td>Órgano, Malinche</td>
<td>Medicinal, forrajera, cercas vivas, combustible</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Peniocereus vigerinus (F.A.C. Weber) F. Buxb</td>
<td>Viborita</td>
<td>Ornamental, comestible</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Caesalpiniaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caesalpina pulcherrima (L.) Sw.</td>
<td>Bigote</td>
<td>Ornamental</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Conzattia multiflora (Robinson) Standley</td>
<td>Palo blanco</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Parkinsonia praecox (Ruiz & Pavón) Harms</td>
<td>Manteco, palo verde</td>
<td>Medicinal, cercas vivas, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipomoea pauciflora Mart. & Gal.</td>
<td>Cozahuate</td>
<td>Medicinal, ornamental, combustible tóxica</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Crassulaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echeveria gbbiflora DC.</td>
<td>Siempreviva, orejona</td>
<td>Medicinal, ornamental</td>
<td>Silvestre, trasplantada</td>
</tr>
<tr>
<td>Sedum allantoides Rose</td>
<td>Lengua de conejo</td>
<td>Medicinal, ornamental</td>
<td>Silvestre, trasplantada</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acalypha hederacea Torr.</td>
<td>Hierba del pastor</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Cnidoscolus tehuacanensis Breckon</td>
<td>Mala mujer</td>
<td>Medicinal, comestible</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Croton ciliato-glandulifer Ortega</td>
<td>Soleman, San Nicolás</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Euphorbia splendens Boj. Ex Hook.</td>
<td>Corona de Jesús</td>
<td>Ornamental</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Jatropha dioica Sessê</td>
<td>Sangre de grado</td>
<td>Medicinal, forrajera</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Pedilanthus cymbiferus Schldl.</td>
<td>Zapatito</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Ricinus communis L.</td>
<td>Ricino</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Fabaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrina americana Mill.</td>
<td>Colorín</td>
<td>Ornamental</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Hydrophyllaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wigandia urens (Ruiz & Pavón) Kunth</td>
<td>Tabaco</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marrubium vulgare L.</td>
<td>Marmubio de monte, Kathuchjeeckunia</td>
<td>Medicinal</td>
<td>Silvestre, cultivada</td>
</tr>
<tr>
<td>Salvia sp.</td>
<td>Salve real</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
</tbody>
</table>
Continúa cuadro 5.6

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Manejo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loranthaceae</td>
<td>Phoradendron californicum Nutt.</td>
<td>Solobaron</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Malva parviflora L.</td>
<td>Malva</td>
<td>Medicinal, comestible</td>
</tr>
<tr>
<td>Mimosaceae</td>
<td>Acacia farnesiana (L.) Wild.</td>
<td>Huizache</td>
<td>Medicinal, forrajera, combustible</td>
</tr>
<tr>
<td></td>
<td>Lysiloma divaricata (Jacq.) Mack.</td>
<td>Palo blanco</td>
<td>Medicinal, combustible</td>
</tr>
<tr>
<td>Nolinaceae</td>
<td>Beaucarnea gracilis (L.) Lem.</td>
<td>Sotolin, pata de elefante</td>
<td>Ornamental</td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>Laelia albida Bateman ex Lindley</td>
<td>Monjitas</td>
<td>Ornamental</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>Argemone mexicana L.</td>
<td>Chicalote</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Phytolaccaceae</td>
<td>Rivina humilis L.</td>
<td>Hierba de la vibora</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Arundo donax L.</td>
<td>Carrizo</td>
<td>Medicinal, forrajera</td>
</tr>
<tr>
<td>Polemoniaceae</td>
<td>Loeselia coerulae G. Don</td>
<td>Espinosilla, katsjo morado</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>Rumex crispus L.</td>
<td>Lengua de vaca</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Primulaceae</td>
<td>Anagallis arvensis L.</td>
<td>Hierba del espanto</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td>Karwinskia humboldtiana (Roemer & Schultes) Zucc.</td>
<td>Guayabito</td>
<td>Ornamental</td>
</tr>
<tr>
<td></td>
<td>Zizyphus amole (Sessé & Mocio) M.C. Johnston</td>
<td>Cholulo de monte</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Selaginellaceae</td>
<td>Selaginella lepidophylla Spring</td>
<td>Doradilla</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Datura inoxia Miller</td>
<td>Tlapa</td>
<td>Medicinal</td>
</tr>
<tr>
<td></td>
<td>Datura stramonium L.</td>
<td>Belladona, tlapa</td>
<td>Medicinal</td>
</tr>
</tbody>
</table>
Continúa cuadro 5.6

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Manejo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margaranthus solanaceus Schltdl.</td>
<td>Totomache</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Nicotiana glauca Graham</td>
<td>Gigante, ntagigante, kandaxantigani</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Solanum americanum Miller</td>
<td>Hierba mora</td>
<td>Medicinal, comestible</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Solanum rostratum Dunal</td>
<td>Diente de perro</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Solanum tridynamum Dunal</td>
<td>Diente de burro</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Turneraceae</td>
<td>Itambo real</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Turnera diffusa Wild.</td>
<td>Itambo real</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Ulmaceae</td>
<td>Biscolete, hoja de parra</td>
<td>Medicinal, combustible</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Celtis pallida Torrey</td>
<td>Biscolete, hoja de parra</td>
<td>Medicinal, combustible</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>Cinco negritos</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Lantana achyranthifolia Desf.</td>
<td>Cinco negritos</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Lantana camara L.</td>
<td>Orégano</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Lippia graveolens Kunth</td>
<td>Orégano</td>
<td>Medicinal, forrajera, combustible, especia</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Zygophyllaceae</td>
<td>Guzapoli</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Kallstroemia hirsutissima Vail</td>
<td>Guzapoli</td>
<td>Medicinal</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Morkillia mexicana (Mocío & Sessé) Rose & Painter</td>
<td>Flor de San Juan</td>
<td>Ornamental</td>
<td>Tolerada</td>
</tr>
</tbody>
</table>

Cuadro 5.7 Familias y especies de plantas silvestres y plantas cultivadas en huertos en la localidad de San Rafael, Coxcatlán, dentro de Reserva de la Biósfera Valle de Tehuacán-Cuicatlán.

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td>Hierba de la tircia</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Gypsacanthus neltonii E. J. Lott, V. Jaram. & Rzed.</td>
<td>Hierba de la tircia</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Agavaceae</td>
<td>Magueycillo</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Agave stricta Salm-Dyck</td>
<td>Magueycillo</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Amaryllidaceae</td>
<td>Sábila</td>
<td>Huerto</td>
</tr>
<tr>
<td>Aloe vera (L.) Burm. f.</td>
<td>Sábila</td>
<td>Huerto</td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 5.7

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anacardiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schinus molle L.</td>
<td>Coabino o pirul</td>
<td>Huerto</td>
</tr>
<tr>
<td>Cyrtocarpa procera Kunth</td>
<td>Chupandilla</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Asteraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaveria trinervia (Spreng.) C. Mohr</td>
<td>Hierba del Sapo</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Gymnosperma glutinomum (Spreng.) Less.</td>
<td>Popote</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Montanoa tomentosa Cerv.</td>
<td>Acahuite</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Verbesina crocata (Cav.) Less.</td>
<td>Árlica</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Viguierra dentata (Cav.) Sprengel</td>
<td>Chimalacate</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Bombacaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiba parvifolia Rose</td>
<td>Pochote</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Burseraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursera arida (Rose) Standley</td>
<td>Aceitillo</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Cactaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hylocereus undatus (Haw.) Britton & Rose</td>
<td>Pitahaya</td>
<td>Huerto</td>
</tr>
<tr>
<td>Ferocactus latispinus (Haw.) Britton & Rose</td>
<td>Biznaga</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Opuntia sp.</td>
<td>Nopal</td>
<td>Huerto</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodium murale L.</td>
<td>Chaguacuelté</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyperus hemaphroditus (Jacq.) Standl.</td>
<td>Piomía</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acalypha hederacea Torr.</td>
<td>Hierba del pastor</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Cnidoscolus chayamansa McVaugh</td>
<td>Chaya</td>
<td>Huerto</td>
</tr>
<tr>
<td>Jatropha neopauciflora Pax</td>
<td>Sangre de grado</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Ricinus communis L.</td>
<td>Higuerrilla</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Julianiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juliania adstringens (Schild.) Schidl.</td>
<td>Cuachalalía</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentha x piperita L.</td>
<td>Hierbabuena</td>
<td>Huerto</td>
</tr>
<tr>
<td>Ocimum basilicum L.</td>
<td>Albahaca</td>
<td>Huerto</td>
</tr>
</tbody>
</table>
CONTINUACIÓN CUADRO 5.7

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mimosaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimosa luisana Brandege</td>
<td>Uña de gato</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnston</td>
<td>Mezquite</td>
<td>Huerto</td>
</tr>
<tr>
<td>Nyctaginaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bougainvillea spectabilis Willd.</td>
<td>Bugambilia</td>
<td>Huerto</td>
</tr>
<tr>
<td>Papaveracea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argemone mexicana L.</td>
<td>Chicalote</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Piperaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piper auratum Kunth</td>
<td>Hoja santa</td>
<td>Huerto</td>
</tr>
<tr>
<td>Rutaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruta chalepensis L.</td>
<td>Ruda</td>
<td>Huerto</td>
</tr>
<tr>
<td>Selaginellaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selaginella lepidophylla (Hook. & Grev.) Spring</td>
<td>Siempre viva o doradilla</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Simaroubaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castela tortuosa Liebm.</td>
<td>Venenillo</td>
<td>Silvestre</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lippia graveolens Kunth</td>
<td>Orégano</td>
<td>Silvestre</td>
</tr>
</tbody>
</table>

CUADRO 5.8 Familias y especies nativas con uso ornamental y/o medicinal de la Sierra Norte de Puebla

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justicia spicigera Schltdl.</td>
<td>Muittle</td>
<td>Medicinal</td>
<td>Introducida</td>
</tr>
<tr>
<td>Odontinema caustachium (Schltdl. et clam) O. Kuntze</td>
<td>Muittle morado</td>
<td>Medicinal, ornamental</td>
<td>Nativa</td>
</tr>
<tr>
<td>Agavacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yucca aloifolia L.</td>
<td>Izote</td>
<td>Medicinal, cerca viva</td>
<td>Nativa</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spondias purpurea L.</td>
<td>Ciruela</td>
<td>Medicinal, alimenticia, cerca viva</td>
<td>Nativa</td>
</tr>
</tbody>
</table>

(Continúa)
Continúa cuadro 5.8

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apocynaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumeria rubra L.</td>
<td>Cacaloxochil, flor de mayo</td>
<td>Medicinal, ceremonial</td>
<td>Nativa</td>
</tr>
<tr>
<td>Stemmadenia donell-smittii (Rose) Woodson</td>
<td>Cojón de gato, cojón de toro</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Araceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monstera deliciosa Liebm</td>
<td>Piñanona</td>
<td>Ornamental, bebidas</td>
<td>Nativa</td>
</tr>
<tr>
<td>Xanthosoma robustum Schott</td>
<td>Mafa</td>
<td>Medicinal, alimenticia</td>
<td>Nativa</td>
</tr>
<tr>
<td>Xanthosoma violaceum Schott</td>
<td>Mafa morada</td>
<td>Ornamental, alimenticia</td>
<td>Nativa</td>
</tr>
<tr>
<td>Araliaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oreopanax xalapensis (Kunt) Decne et. Planch</td>
<td>Palo de agua</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Areceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areceaster romanzoffianum (Cham.) Bechari</td>
<td>Coyul</td>
<td>Ornamental, alimenticia</td>
<td>Introducida</td>
</tr>
<tr>
<td>Chamaedorea oblongata Mart</td>
<td>Tepejilote</td>
<td>Ornamental, ceremonial, medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Chamaedorea tepejilote Liebm</td>
<td>Tepejilote</td>
<td>Medicinal, ceremonial</td>
<td>Nativa</td>
</tr>
<tr>
<td>Asteraceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ageratum sp.</td>
<td>Hoja santa</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Eupatorium macrophyllum L.</td>
<td>Hoja santa</td>
<td>Medicinal, cerca viva</td>
<td>Nativa</td>
</tr>
<tr>
<td>Eupatorium monfolium Mill.</td>
<td>Guaco</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Mikania micrantha (Kunth)</td>
<td>Guaco</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Monticonia grandifolia DC. Schultz-Bip</td>
<td>Cernavaca</td>
<td>Ornamental</td>
<td>Nativa</td>
</tr>
<tr>
<td>Verbeseina persicifolia DC.</td>
<td>Huichin</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Bombacaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudobombax ellipticum Dugand</td>
<td>Xilochichil</td>
<td>Ornamental, cerca viva</td>
<td>Nativa</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidium virgínicum L.</td>
<td>Lentejilla</td>
<td>Medicinal</td>
<td>Introducida</td>
</tr>
<tr>
<td>Burseraceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursera simaruba (L.) Sarg,</td>
<td>Chaca</td>
<td>Medicinal, ceremonial, cerca viva</td>
<td>Nativa</td>
</tr>
<tr>
<td>Cactaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhipsalis bassifera (Soland ex J. Mill.) Stearn</td>
<td>Mazonquira, nigüilla</td>
<td>Medicinal, alimenticia</td>
<td>Nativa</td>
</tr>
</tbody>
</table>
Continúa cuadro 5.8

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprifoliáceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sambucus mexicana Presl.</td>
<td>Sauco</td>
<td>Medicinal, ceremonial</td>
<td>Nativa</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commelina diffusa Burm. f.</td>
<td>Matalín morado</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Commelina erecta L.</td>
<td>Hierba del pollo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Tradescantia pallida (Rose) D. Hunt</td>
<td>Hierba del gallo, barquilla</td>
<td>Ornamental, medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Tradescantia spathacea Swartz</td>
<td>Matalín, matalín morado</td>
<td>Ornamental</td>
<td>Nativa</td>
</tr>
<tr>
<td>Tradescantia zebrina Hort. ex Loud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costus pulverulentus C. Presl.</td>
<td>Caña de venado</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Costus spicatus (Jacq) Swartz</td>
<td>Caña de jabali</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Dioscoreaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioscorea floribunda Martens et Galeotti</td>
<td>Barbasco amarillo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Equisetaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equisetum fluviatile L.</td>
<td>Cola de caballo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Equisetum hyemale L.</td>
<td>Cola de caballo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Fabaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauhinia divaricata L.</td>
<td>Pata de vaca</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Caesalpinia pulcherrima (L.) Swartz</td>
<td>Conchaigra, cabello de ángel</td>
<td>Ornamental</td>
<td>Nativa</td>
</tr>
<tr>
<td>Eysenhardtia polystachia (Ort.) Sarg.</td>
<td>Chiquiliche</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Senna septemtrionalis (Viv.) H. Irvin et Barneby</td>
<td>Candelilla</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Gesneriaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columnea schiedana Schltdl.</td>
<td>Mazorquía</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Kohleria depeanna Fritsch.</td>
<td>Tochomite</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum carnosum Link et Otto</td>
<td>Teposhijiac</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Ocimun micranthum Willd.</td>
<td>Albahaca</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Ocimum selowii Benth.</td>
<td>Hierba del hierro</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Salvia microphylla Kunt.</td>
<td>Mirto</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
</tbody>
</table>
Continúa cuadro 5.8

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liliaceae</td>
<td>Aloe vera (L.) Burm. f.</td>
<td>Sábila</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Loranthaceae</td>
<td>Struthanthus desinflorus (Benth.) Standl.</td>
<td>Secapalo</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Lycopodiaceae</td>
<td>Lycopodium cernuum L.</td>
<td>Risco</td>
<td>Ornamental</td>
</tr>
<tr>
<td>Lytraceae</td>
<td>Cuphea ferrisae SD. Graham.</td>
<td>Hierba del cáncer</td>
<td>Medicinal</td>
</tr>
<tr>
<td></td>
<td>Cuphea micropetala Kunth.</td>
<td>Aheancán</td>
<td>Medicinal, ornamental</td>
</tr>
<tr>
<td></td>
<td>Heimia salicifolia (HBK.) Link</td>
<td>Xoneculi</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>Talauima mexicana (D.C.) G. Don</td>
<td>Yoloxochitl</td>
<td>Medicinal, ceremonial</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Hampea nutricia Fryxell</td>
<td>Nacahuita</td>
<td>Medicinal</td>
</tr>
<tr>
<td></td>
<td>Malaviscus arboreus Cav.</td>
<td>Manzanita</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Dorstenia contrajeva L.</td>
<td>Mano de león</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Nyctaginaceae</td>
<td>Myrabilis xalapa L.</td>
<td>Maravilla</td>
<td>Ornamental</td>
</tr>
<tr>
<td>Onagraceae</td>
<td>Oenothera rosea L Hér. Ex Ait</td>
<td>Platanillo</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>Oncidium sp.</td>
<td>Flor de mayo</td>
<td>Ornamental</td>
</tr>
<tr>
<td></td>
<td>Vanilla planifolia Andr.</td>
<td>Vainilla</td>
<td>Ornamental, saborizante, medicinal</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>Bocconia frutescens L.</td>
<td>Gordolobo</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Passifloraceae</td>
<td>Passiflora coriacea Juss.</td>
<td>Ala de murciélago</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Phytolaccaceae</td>
<td>Rivina ubilis L.</td>
<td>Bajetripa</td>
<td>Medicinal</td>
</tr>
<tr>
<td>Pinaceae</td>
<td>Pinus patula Schltdl. El Cham</td>
<td>Ocote</td>
<td>Medicinal, construcción</td>
</tr>
</tbody>
</table>
Continúa cuadro 5.8

<table>
<thead>
<tr>
<th>Familia/especie</th>
<th>Nombre común</th>
<th>Uso</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piper auritum Kunt</td>
<td>Ornequetil</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Piper melastomoides Schltd et Cham</td>
<td>Cordoncillo negro</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Piper sanctum (Miq) Schltd</td>
<td>Acoyo, cordoncillo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Potomorphe unbellata (L) Miq</td>
<td>Cordoncillo grande</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Polypodiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiantrun princeps T Moore</td>
<td>Culantrillo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Campyloneurum phyllitidis (L.) Presl</td>
<td>Lengua de siervo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Micrograma nitida (J. Smith) A. R. Smith</td>
<td>Lengua de siervo</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Polyodium sp.</td>
<td>Calaguala</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Polyodium polypodioide (L.) Watt.</td>
<td>Siempreviva</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouvardia ternifolia (Cav.) Schltd</td>
<td>Trompetilla</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Crusea diversifolia (Kunth) Anderson</td>
<td>Hierba de La garrapata</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Salicaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix taxifolia Kunth</td>
<td>Palo tres costillas</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Sapindaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serjania racemosa Schumacher</td>
<td>Palo tres costillas</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Solanaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotiana tabacum L.</td>
<td>Tabaco</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Solanum erianthum (L.) G. Don</td>
<td>Malabar</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Solanum wendlandii Hook f.</td>
<td>Cachanil</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Whiteringia salanacea L ‘Hér</td>
<td>Hierbamora cimarrona</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Urticaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urtica chamaedryoides Pursh</td>
<td>Chichicastle</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lantana camara L.</td>
<td>Orozus, ojo de pescado</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Lippia dulcis Trev.</td>
<td>Hierbadulce</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Verbena litoralis Kunth.</td>
<td>Verbena</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
<tr>
<td>Viscaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoradendrum nervosum Oliver</td>
<td>Injerto</td>
<td>Medicinal</td>
<td>Nativa</td>
</tr>
</tbody>
</table>

Cuadro 5.9 Principales municipios productores de plantas medicinales del estado de Puebla.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Nombre común</th>
<th>Procedencia</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocimum basilicum</td>
<td>Albahaca</td>
<td>Traspatios, huertos familiares</td>
<td>Tepexi de Rodríguez, Tehuitzingo, Acatlán, Tepeyahualco, Oriental, Tepeaca, Izúcar de Matamoros, Chietla</td>
</tr>
<tr>
<td>Arnica montana L.</td>
<td>Arnica</td>
<td>Silvestre, traspatios, huertos familiares</td>
<td>Tlachichua, Chalchihomula de Sesma, San Salvador el Seco, Ahuazotepec, Guadalupe Victoria, San Nicolás Buenos Aires, Aljojuca, Zaragoza, Oriental</td>
</tr>
<tr>
<td>Costus spicatus</td>
<td>Caña de jabalí</td>
<td>Traspatios, huertos familiares</td>
<td>Francisco Z. Mena, Pantepec, Venustiano Carranza, Tlacolotepec, Tlaixco, Jalpan, Xicotepec, Zihuateutla</td>
</tr>
<tr>
<td>Equisetum bymale L.</td>
<td>Cola de caballo</td>
<td></td>
<td>Xicotepec, Jalpan, Zihuateutla, Juan C. Bonilla, Tlatlauquitepec, Aljojuca, San Salvador el Verde, Santa Rita Tlahuapan, Cuetzalan, Puebla</td>
</tr>
<tr>
<td>Amphipherygium adstringens, Schiede ex Schlecht</td>
<td>Cuachalalate</td>
<td>Silvestre</td>
<td>Tehuitzingo, Cohetzala, Teotitlán, Chiautla de Tapa, Ixcamilpa de Guerrero, Cohuecan, Tepeyxcó, Tilapa, Huauquechula, Izúcar de Matamoros</td>
</tr>
</tbody>
</table>
Continúa cuadro 5.9

<table>
<thead>
<tr>
<th>Especie</th>
<th>Nombre común</th>
<th>Procedencia</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnera diffusa</td>
<td>Damiana</td>
<td>Silvestre</td>
<td>Teziutlán, Atempan, Chinantla, Acatlán de Osorio, San Pablo, Matamoros, Chiapas, Huehuete, el Grande, Albino, Zertuche</td>
</tr>
<tr>
<td>Ceterach officinarum</td>
<td>Doradilla</td>
<td>Silvestre</td>
<td>Petlacingo, Axutla, Matamoros, Chiautla de Tapia, Tilapa, Chihuahua, el Chico, Puebla, Teopantlán, Tehuitzingo, Chietla</td>
</tr>
<tr>
<td>Sida rhombifolia</td>
<td>Hierba del perro</td>
<td>Silvestre, traspatios, huertos familiares</td>
<td>Puebla, Huehuete, el Grande, Teopantlán, Atillox</td>
</tr>
<tr>
<td>Matricaria recutita</td>
<td>Manzanilla</td>
<td></td>
<td>San Miguel Xoxtla, Vicente Guerrero, Los Reyes de Juárez, Cuapiaxtla, de Madero, Atzitzintla, Chalchicomula, de Sesma, Tlacihica, San Juan Atenco, San Salvador el Seco, San Nicolás Buenos Aires</td>
</tr>
<tr>
<td>Glicidida sepium (Jacquin) Kunth ex Walpers</td>
<td>Mata rata</td>
<td>Silvestre, huertos familiares</td>
<td>Tehuitzingo, Chiautla, Matamoros, Huehuete, el Chico, Xicotlán, Jolaipan, Tulpicio, Atillox, Piexlta, Axutla</td>
</tr>
</tbody>
</table>

(Continúa)
<table>
<thead>
<tr>
<th>Especie</th>
<th>Nombre común</th>
<th>Procedencia</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origanum majorana L.</td>
<td>Mejorana</td>
<td>Traspatios, huertos familiares</td>
<td>Teziutlán, Hueyapan, Hueytamalo, Zacapoaxtla, Cuetzalan, Xiytetelco, Yaonahuac, Atempan, Tlatlaquitepec, Atempan</td>
</tr>
<tr>
<td>Justicia spicigera Schult</td>
<td>Muicle</td>
<td>Silvestre, traspatios, huertos familiares</td>
<td>Puebla, Acatlán, Izúcar de Matamoros, Chinantla, Tecomatlán, Tehuitzingo, Zacapa, Piaxtla, Tulcingo, Chapulco</td>
</tr>
<tr>
<td>Hypericum perforatum</td>
<td>Pericón</td>
<td>Silvestre, traspatios, huertos familiares</td>
<td>San Salvador el Verde, Tepey de Rodríguez, Juan N. Méndez, Molcahac, Acteopan, Atexcal, Zacapa, Zautla, Puebla, Tecali de Herrera</td>
</tr>
<tr>
<td>Rosmarinus officinalis L.</td>
<td>Romero</td>
<td>Huertos familiares</td>
<td>Palmar de Bravo, Tehuacán, Caltepec, Coronango, San Salvador el Verde, Zapotítlan Salinas, San Martín Texmelucan, San Miguel Xoxtlá, Zautla, Francisco Z. Mena</td>
</tr>
<tr>
<td>Ruta graveolens L.</td>
<td>Ruda</td>
<td></td>
<td>Chalchicomula de Sesma, Tlachichuca, Guadalupe Victoria, Tlanguismanalco, Atlixco, San Pedro Cholula, Tehuacán, Zacapoaxtla, Tetela de Ocampo</td>
</tr>
</tbody>
</table>
Aromáticas y condimentos

Puebla posee una gran variedad de especies vegetales aromáticas y condimentos; algunas de ellas son recolectadas y otras cultivadas, aunque muchas veces su cultivo se reduce a pequeñas áreas o en los huertos familiares de las zonas rurales y urbanas, encontrándose en estos sitios una gran riqueza genética. En el Cuadro 5.10 se concentra información de estas especies y las regiones geográficas donde se distribuyen, como la Sierra Norte (Martínez et al. 2007), la Sierra Nororiental, la Mixteca Poblana y la región de Tehuacán (SDR 2007e; Paredes et al. 2007), aunque es importante hacer notar que algunas de ellas están ampliamente distribuidas en el territorio poblano (Figura 5.8).

Ornamentales

A nivel mundial, las cactáceas están constituidas por 52 géneros y 850 especies, de las cuales el 35 % de los géneros y el 84 % de las especies son endémicas de México. Del total de las cactáceas que existen en México, casi el 35 % se encuentra en riesgo (Hernández y Godínez 1994). La reserva de la biosfera de Tehuacán-Cuicatlán es una de las zonas con mayor diversidad de cactáceas en el país, con más de 600 especies, de las cuales el 30 % son endémicas; algunas de ellas se utilizan como plantas ornamentales como los viejitos (Cephalocereus columna-trajani).

Especies de otras familias que prosperan en el Estado y que muestran una amplia diversidad, también son aprovechadas, como los ocotillos (Fouquieria),
las cicadas, los magueyes y una especie endémica: el sotolin o pata de elefante (Beaucarnea recurvada y B. gracilis), que de acuerdo a la NOM-059-SEMARNAT-2001 se encuentra amenazada, por lo que requiere protección especial. Existen otras especies importantes como el órgano cardón (Pachycerus marginatus), la jiotilla (Escontria chiotilla), la pitaya (Hylocereus undatus) (Figura 5.9), entre otras. Estas especies crecen de forma silvestre o cultivada en traspatios y huertos familiares de 43 municipios del Estado, entre los que destacan Tehuitzingo, Acatlán de Osorio, Caltepec, Totoltepec de Guerrero, Xayacatlán de Bravo y Zapotitlán Salinas (SDR 2007g).

Otras

Lupino (Lupinus spp.)

Las especies de este género se encuentran en estado silvestre en la región central de México, principalmente en la intersección del Eje Neovolcánico Transversal con la Sierra Madre Occidental (Ruíz y Sotelo 2000). Entre las especies reportadas para el estado de Puebla por Rzedowski (1979) se encuentran Lupinus aschenbornii Schauer, Lupinus campestris Cham. & Schel. (syn. L. pulchellus Sweet), Lupinus exaltatus Zucc. (syn. L. grandis Rose) y Lupinus montanus H.B.K. (syn. L. vaginatus Cham. & Schl.: L. grabrior Rose). Se localizan en su mayoría a partir de 2 800 msnm, asociadas con bosques de Abies religiosa, Pinus hartwegii, Pinus montezumae, Pinus pseudostrobus, Juniperus monticola, Bromus anomalus, Bromus exaltatus y Senecio spp. (Boyas 1993).

En el Parque Nacional Pico de Orizaba, Lupinus montanus es una de las especies dominantes del estrato herbáceo junto con Agrostis tolucensis y Mulhenbergia sp. (Vargas 1984). Las especies de este género en el Estado son herbáceas anuales, bianuales o perennes de vida corta, con un alto contenido de alcaloides, además de ser una planta fijadora de nitrógeno. Este género tiene potencial como planta forrajera o para el complemento en dietas para el ganado, previa eliminación de alcaloides.

Guaje (Leucaena spp.)

Es una leguminosa perenne de la que se distinguen dos tipos, guaje verde y guaje rojo, por el color de su vaina. El primero es de más amplia adaptación ya que se le localiza en las Sierras Norte y Nororiental y en la Mixteca Baja y en el Valle de Tehuacán, mientras que el guaje rojo crece únicamente en la
Mixteca Baja y en el Valle de Tehuacán (SDR 2007a). Es una especie de importancia regional y también se le atribuye propiedades medicinales.

ESPECIES FORESTALES
Carlos Ramírez Herrera, Luis Villarreal Ruiz.

La alta biodiversidad es una característica de los bosques en el estado de Puebla (Rzedowski 1986; Perry 1991) y los altos niveles de diversidad genética son fundamentales para la adaptación de las especies a cambios ambientales drásticos (Hamrick 1983). Sin embargo, existe poca información disponible sobre los niveles de diversidad genética en las especies arbóreas en el estado, a pesar de su importancia ecológica y económica.

Especies maderables
Coníferas
Forman masas arbóreas puras o en asociación con especies de los géneros *Quercus* y *Alnus* en gran parte del área montañosa del estado de Puebla. De las 54 especies del género *Pinus* reportadas en México, 17 crecen en el Estado (Perry 1991), siendo comunes los bosques dominados por *Pinus patula* en el norte. En los bosques localizados en las regiones montañosas del Popocatepetl, Ixtaccihuatl, Pico de Orizaba y La Malinche crecen *Pinus hartwegii*, *P. rudis* (Figura 5.10), *P. montezumae*, *P. pseudostrobus*, *P. oaxacana*, *P. ayacahuite*, *P. leiophylla* y *Abies religiosa* entre otras. *Pseudotsuga menziesii* es una especie que se distribuye desde British Columbia en Canadá hasta la parte central del estado de Oaxaca; en Puebla se localiza en una población en el ejido Cuauhtémoc, municipio de Guadalupe Victoria, en las faldas orientales del Pico de Orizaba.

En la actualidad, la semilla de *P. menziesii* es altamente valorada en México para la producción de plántulas para el establecimiento de plantaciones para árboles de navidad. Sin embargo, *P. menziesii* crece en poblaciones muy reducidas y fragmentadas que están en riesgo de desaparecer en el centro de México.

![Figura 5.10 Bosque de *Pinus rudis* Endl. en el Parque Nacional Pico de Orizaba, en el estado de Puebla (Foto: Carlos Ramírez Herrera).](image)
En el límite norte del Valle de Serdán se localiza una comunidad vegetal del matorral xerófilo dominada principalmente por *Yucca filifera* y *Juniperus* spp. La madera de los árboles del género *Juniperus* tiene un aroma agradable, que se mantiene por muchos años. Además, esta madera es muy densa y en algunas regiones de México es utilizada para la elaboración de muebles. En el Valle de Serdán-Líbres los árboles del género *Juniperus* se pueden encontrar dispersos en los campos agrícolas, por lo que las poblaciones de este género se encuentran amenazadas en esa región.

Latifoliadas

Los bosques tropicales son ecosistemas con los más altos niveles de biodiversidad. El bosque tropical perennifolio y bosque tropical caducifolio se localizan en las regiones norte y sur del estado de Puebla, respectivamente. En el bosque tropical perennifolio crecen especies latifoliadas de alto valor comercial como *Cedrela odorata*, *Swietenia macrophylla* y *Brosimum alicastrum*, que han estado sometidas a una sobreexplotación debido al valor de su madera (Rzedowski 1986). En el bosque tropical caducifolio abundan especies del género *Bursera* (Becerra y Lawrence 1999), además de muchas otras especies con un alto valor ecológico y económico, entre las que destaca *Swietenia humilis*, por su madera alta calidad para la construcción de muebles.

El bosque mesófilo de montaña es otro ecosistema biodiverso que se localiza en el norte de Puebla y se caracteriza por la presencia de *Liquidambar styraciflua* asociado con especies de los géneros *Quercus*, *Pinus*, *Platanus*, *Magnolia*, *Fraxinus* y *Juglans* (Rzedowski 1986) y es considerado como uno de los ecosistemas más perturbados de México, debido al cambio del uso del suelo por la siembra de cultivos agrícolas y cafetales.

No maderables

En el bosque tropical caducifolio de la cuenca del Río Balsas se identificaron 108 especies arbóreas entre las que se cuentan 15 especies de *Bursera* y cinco de *Acacia* (Guizar-Nolazco y Sánchez-Vélez 1991). En este bosque crecen especies de plantas de las que se puede extraer importantes compuestos útiles en la industria farmacéutica, Noguera et al. (2004) y Carretero et al. (2008) reportan un compuesto extraído de las hojas de *Bursera simaruba*, que puede ser utilizado para la elaboración de compuestos anti-inflamatorios. La resina de *B. copallifera* es aprovechada y los extractos del tallo y hojas de *B. copallifera* y *Prosopis laevigata* han mostrado una considerable efectividad en el control de *Haemonchus contortus*, un parásito que ataca al ganado ovino (López-Aroche et al. 2008). La esencia de lináolea es extraída de la madera de *Bursera* sp., este aceite es utilizado en la industria del perfume. El cacahuananche (*Gliricidia sepium*) es una especie fijadora de nitrógeno y utilizada como cerco vivo y forraje en el área tropical del estado de Puebla y otras regiones de México.

En el caso de las especies del matorral espinoso del Valle de Tehuacán, sobresalen las del género *Acacia* spp. que crecen con especies de mezquite (*Prosopis* spp.). En esta región están mezclados individuos de cactus columnares (*Cephalocereus hoppenstedtii*) con individuos de nopales (*Opuntia* spp.), *Agaves* (*Agave* spp.) y *Acacias* (*Acacia* spp.), constituyendo una comunidad vegetal única en México (Figura 5.11).

La recolección de semilla de *Pinus cembroides* subsp. *orizabensis* y su venta como “piñón” representa una fuente adicional de ingresos para las comunidades rurales donde crece esta especie. Además, en los últimos años, las semillas de árboles forestales tienen una gran demanda para la producción de plantas necesarias para la repoblación asistida, en la recuperación de áreas degradadas.

ESPECIES ANIMALES

Samuel Vargas López

Las especies animales que son utilizadas en el estado son los bovinos (777 095 cabezas), porcinos (2 045 177 cabezas), ovinos (504 660 animales), equinos (293 285 cabezas), gallinas (52 004 001 cabezas), guajolotes (602 566 cabezas) (INEGI 2007) y la fauna silvestre. La cría de estas especies se realiza en dos sistemas de producción: 1) las explotaciones comerciales (intensivas) y 2) en la...
ganadería familiar, en tanto que la fauna silvestre es aprovechada por la mayoríá de las comunidades rurales sin planes de manejo o conservación.

Bovinos

Los bovinos existentes en el estado proceden del *Bos taurus* (vacas lecheras y criollas) y del *Bos indicus* (Cebú), ambas especies introducidas al país. El ancestro de los bovinos criollos es el *Bos taurus primigenius*; en la actualidad la región Mixteca es un ejemplo del mosaico étnico, donde la similitud y divergencias entre los bovinos criollos son visibles. En el siglo pasado se importaron las vacas lecheras *Holstein friesian* (Sánchez 1984), con gran desarrollo del sistema mamario y morfotipo externo de especialidad productiva, distribuidas ampliamente en las regiones de Libres, Tecamachalco, Cholula y Tehuacán. Otro tipo de bovinos son los toros de lidia, que conservan las características de poca alzada, pelo rizado y capa predominantemente castaña; su origen se atribuye a bovinos procedentes de España (Laguna 1991).

Equinos

Los equinos son la principal fuerza animal utilizada para el acarreo de productos y la tracción (Figura 5.12). En la región de Tecamachalco, los equinos presentes son los caballos (91 %), seguido de los asnos (8 %) y las mulas (1 %) (Rubio et al. 2004). Los estudios etnológicos describen a los caballos como de tamaño medio, en talla y longitud del cuerpo (Barrera et al. 2005).

Ovinos

Los ovinos (*Ovis aries*) son descendientes de los tipos genéticos merino, lacha y churra (Laguna 1991) y de las razas introducidas en el siglo pasado (Figura 5.13). Vargas et al. (2004) registraron variación de razas en una muestra estudiada: cruzas con varias razas (47.8 %), el tipo genéctico local de lana (20.6 %) y el borrego pelibuey (31.6 %); en tanto que Chavarría (1992) señala la presencia de los ovinos criollos (30.1 %), Rambouillet (29.2 %) y Suffolk (40.7 %), en la Cordillera del Tentzo. Hernández et al. (2006) señalan que en el
municipio de Cuyoaco predomina el tipo genético Criollo x Suffolk, siendo mayor el peso en los machos (Chavarría 1992). La elaboración de barbacoa es el principal producto al que se destinan los ovinos, con un rendimiento en canal de 53.2 % y de barbacoa de 76.7 % (Reséndiz et al. 2006).

Caprinos
Las cabras descienden de la forma antigua Capra aegagrus que dio origen a los tipos Alpino y Prísca (Sánchez 1999). El tipo Alpino se observa en algunas cabras criollas de la Mixteca y en la mayoría de las cabras de tipo lechero del Altiplano de Puebla; son de perfil cóncavo o subconvexo, cuernos en arco y decoración o intensificación de las bandas laterales de la cara. Al tipo Prísca pertenece la mayoría de los caprinos de la Mixteca (raza Pastoreña), son de perfil recto y cuernos en tirabuzón rectos hacia atrás. El rendimiento en canal es mayor en los machos (47.5 %), que en las hembras (46.8 %) (Romero et al. 2006). Para la región de la Sierra Negra, Fernández et al. (2005) encontró que las poblaciones de cabras locales son de talla pequeña, con 22.5 kg de peso a la edad de 32 meses. Con base al peso vivo y la altura a la cruz, las cabras de las Mixteca y de la Sierra Negra son de tamaño medio, que es el tipo de cabras que se adapta a los ambientes semiáridos (Hernández et al. 2005; Fernández et al. 2005; Vargas et al. 2007).

Porcinos
Vargas et al. (2007) encontraron animales de línea comercial (46.7 %), cruzas de cerdo blanco con cerdos locales (criollos) (27.8 %) y cerdos criollos (25.6 %), en una muestra de cerdos en traspato. Los cerdos criollos se describen como animales de trompa larga, perfil subcóncavo, orejas de tamaño...
medio, patas finas, dorso ligeramente arqueado, pelo grueso lacio u ondulado de color negro o moteado en amarillo, aunque también existen animales rojos o grises. Los cerdos cuinos tienen la trompa pequeña, corta, orejas proporcionadas y erectas, patas finas y pequeñas y pelo no muy abundante y rizado; el color más frecuente es el negro, pero los hay rojos o pintos; alcanzan un peso máximo de 40-45 kg y son de baja prolificidad.

Aves
Comúnmente se reconocen dos sistemas de producción de aves: el intensivo, que son explotaciones comerciales con gallinas de línea para la producción de huevo y el pollo de engorda y la producción de aves en traspatio. Lázaro (2008) señala que la parvada en una comunidad de Tecali de Herrera está compuesta por guajolotes, patos, gansos, pollo de engorda, gallinas de postura de línea, gallina criolla y gallos de pelea. El tipo genético criollo de las aves lo maneja el 97 % de las familias campesinas; dentro de este tipo están los gallos de combate (Jaramillo et al. 2005). Para el caso de los pavos, Hernández et al. (2005), señalan que las familias tienen en promedio 18 pavos de tipo criollo y sus colores predominantes son el negro, blanco y café.

Fauna silvestre
El uso de la fauna silvestre en sistemas diversificados está siendo valorado en el estado de Puebla (Guadarrama 2008). Para su aprovechamiento se están implementando las Unidades para la Conservación, Manejo y Aprovechamiento Sustentable de la Vida Silvestre (UMAs), con el propósito de crear incentivos económicos a través del manejo de los recursos, facilitando la integración de programas de manejo de

Figura 5.13 Existe una alta diversidad genética en las poblaciones de ovinos en el estado de Puebla, los cuales representan una importante fuente de ingreso para las familias campesinas en el estado de Puebla (Foto: Pedro Antonio López).
la vida silvestre a esquemas ganaderos, forestales y agrícolas (Valdez et al., 2006; Guadarrama 2008). Dentro de las especies de fauna silvestre que se manejan en las UMAS, principalmente en la región Mixteca, están la iguana (Ctenosaura pectinata), la paloma (Zenaida asiatica), la chachalaca (Ortalis poliocephala), la codorniz (Philortyx fasciatus) y el conejo (Sylvilagus cunicularius). El venado cola blanca es una especie de importancia que también es manejada en las UMAS, destacando la subespecie o raza geográfica llamada venado cola blanca mexicano (Odocoileus virginianus mexicanus), en la Mixteca Poblana; el venado cola blanca de Veracruz (O. virginianus verae crus) se localiza en la Sierra Nororiental de Puebla, mientras que el venado cola blanca de bosque lluvioso (O. virginianus toltecus) se ubica en la Sierra Negra (Villarreal 2006).

La mayoría de las poblaciones de animales domésticos existentes en México fueron introducidas, a excepción del guajolote y las especies de fauna silvestre aún existentes; sin embargo, por el proceso de selección seguido por los productores se han formado razas que son reconocidas por la FAO, algunas de las cuales existen en Puebla, como son el caprino mosaico mixteco (la cabra blanca pastoreña era la más común), el cerdo cuino (en peligro de extinción) y el cerdo pelón, la gallina cuello desnudo y la criolla, el toro de lidia y los bovinos criollos. Actualmente la mayoría de las razas locales y en general los animales criollos que forman la ganadería están siendo seriamente amenazadas por la falta de planes de aprovechamiento, mejoramiento y conservación.

DIVERSIDAD MICROBIANA:
SU ESTUDIO Y APROVECHAMIENTO ACTUAL Y POTENCIAL

Luis Villarreal Ruiz

La diversidad orgánica, genética y funcional de los microorganismos les permite ocupar diversos nichos ecológicos en prácticamente todos los ecosistemas naturales y transformados, terrestres y acuáticos del estado de Puebla. También los encontramos en la superficie y el interior del cuerpo humano, de animales, plantas y otros microorganismos, donde establecen relaciones simbióticas, antagonistas o mutualistas o son agentes degradadores de la materia orgánica, por lo que su estudio biogeográfico cada vez adquiere mayor relevancia (Curtis y Sloan 2005; Green et al. 2008). La gama de interacciones ecológicas de los microorganismos se traduce en servicios ambientales útiles para el hombre, como la degradación de restos orgánicos, la formación y mantenimiento del suelo y la fijación biológica del nitrógeno, entre otros (Figura 5.14).

Su manipulación biotecnológica permitiría incrementar el rendimiento de cultivos y la producción de alimentos y bebidas, el control biológico de plagas y enfermedades y la producción de metabolitos de importancia farmacológica (Bull et al. 2000). Al igual que en otras regiones del país, la biota microbiana ha sido poco estudiada en el estado de Puebla, lo que hace necesario financiar proyectos de bioprocesamiento en los dominios: 1) Bacteria, en donde existe una gran riqueza de especies de importancia económica para su uso como biofertilizantes o productores de metabolitos útiles. 2) Arquea, que contiene
organismos extremófilos poco valorados y de gran potencial biotecnológico. 3) Eucarías, donde los Proto-
tistas microscópicos, tanto simbiontes como de vida libre, han recibido muy poca atención (López-Ocho-
terena 1993), y 4) los mixomicetos y hongos que
dan sido relativamente mejor estudiados. En el caso
de los mixomicetos, a pesar de ser conocidos como
“hongos mucosos o gelatinosos” y de ser estudiados
tradicionalmente por los micólogos, realmente no
son hongos y están más relacionados con las amo-
ebas (amíbas); en Puebla se han reportado 13 espe-
cies (Ogata et al. 1994; Villarreal 1990) de las cuales
la Fungi septica es considerada comestible por Vi-
larreal y Pérez-Moreno (1989a).

Por su parte, los hongos Glomeromycota, que
forman micorriza arbuscular en plantas silvestres y
cultivadas de importancia comercial, requieren de
una mayor atención. En el caso de los hongos su-
periores (Ascomycetes y Basidiomycetes), constitu-
yen el grupo mejor representado, ya que tan solo
de la Sierra Norte de Puebla, Martínez-Alfaro et al.
(1983) reportaron 76 especies, de las cuales 40 fue-
ron comestibles. Por su parte Villarreal y Pérez-Mo-
reno (1989a y b) documentaron la existencia de 75
especies de hongos silvestres comestibles para todo
el estado de Puebla, lo que constituye una impor-
tante alternativa para el manejo integral y susten-
table de sus bosques (Villarreal 1995a y b).

Dentro de los hongos comestibles y/o medicinales
tenemos aquellas especies saprobias de los géneros
Pleurotus (setas), Lentinula (shiiitake), Agaricus
(champiñón) y Ganoderma, que pueden cultivarse
sobre madera o esquilmos agrícolas para su comer-
cialización en el mercado nacional e internacional,
para impulsar el combate a la pobreza en comunida-
dades rurales marginadas (Martínez-Carrera et al.
2005). Cabe hacer notar que en un mercado popu-
lar de Xalapa, Veracruz, se registró por primera ocu-
sión en México la comestibilidad del hongo Lentinula
boryana, procedente de bosques de encino del es-
tado de Puebla (Villarreal y Pérez-Moreno 1989a).

Figura 5.15. El matsutake u hongo blanco pertenece
al género Tricholoma y se desarrolla en bosque de pino
de regiones semiáridas de Puebla y es ampliamente colocado
en el mercado japonés (Foto: Luis Villarreal Ruiz).
Recientemente Villarreal-Ruiz y Neri-Luna (2009) puntualizaron la necesidad de valorar a los hongos y micorrizas como un recurso genético microbiano mediante un enfoque inter y transdisciplinario, basado en el concepto integrador de la biocomplejidad y combinando el conocimiento de las etnias con los métodos clásicos y los innovadores (bioinformática y genómica). Con ello se pretende desarrollar una metodología estandarizada que facilite su detección, caracterización, bioensayo, mapeo biogeográfico, conservación in situ y ex situ e innovación tecnológica. Dicha propuesta busca generar una base de datos confiable sobre la identificación, ecología, distribución y usos actuales y potenciales de los recursos genéticos microbianos de México. La información que se genere permitirá promover mecanismos para: 1) conservar especies y hábitats, 2) regular la recolección, almacenamiento y apropiación del material genético (banco de genes) y 3) implementar sistemas sostenibles de aprovechamiento y manejo. Además, proponen la integración de redes multilaterales de colaboración para generar estrategias que impulsen la creación de políticas de acceso y beneficios compartidos de los recursos genéticos microbianos para lograr economías, ecosistemas y comunidades sostenibles, respetando el conocimiento tradicional, la autonomía de las etnias y la soberanía nacional.

CONCLUSIÓN

Pedro Antonio López

La amplia variación ambiental en el estado de Puebla ha propiciado una gran diversidad de recursos genéticos, muchos de ellos con origen y distribución muy localizados en sitios específicos del territorio poblano, generando un alto nivel de endemismo, como es el caso de las cactáceas en el Valle de Tehuacán. Es importante reconocer que la interacción del recurso genético con el ambiente y con la diversidad cultural a través del tiempo, ha ocasionado una mayor diversidad a nivel intraespecífico en especies vegetales y animales, que se ha traducido en razas, variedades o poblaciones nativas y criollas que los campesinos y grupos étnicos manejan en su entorno, tal como ocurre con el maíz. El conocimiento de esta diversidad genética debe ser la base para su protección y aprovechamiento de forma sustentable a corto, mediano y largo plazo. Sin embargo cabe resaltar que buena parte de los estudios genéticos desarrollados hasta el momento se han hecho en especies de introducción relativamente reciente (desde el punto de vista evolutivo), por lo que particularmente es necesario desarrollar estudios genéticos en especies nativas que han sido utilizadas tradicionalmente o que tienen un potencial de utilización.

Mexico es un país que presenta una amplia diversidad ambiental, biológica y cultural. La primera queda evidenciada por la intrincada orografía del territorio; Rzedowski (1986) consigna la existencia de ocho sistemas montañosos, cuatro planicies, dos depresiones y una gran cantidad de cerros, sierras y serranías, entre los que quedan insertos pequeños valles (muchos de ellos con actividad agrícola), y por la amplia gama de tipos climáticos: según García (1988), en el país se encuentran cuatro de los cinco tipos climáticos reconocidos por Köppen: A) clima tropical lluvioso, B) clima seco, C) clima templado lluvioso y D) clima frío; el único ausente es el D, clima boreal. Muestra de su diversidad biológica, es el hecho de que México es reconocido como uno de los 15 países megadiversos del planeta, y que en el caso particular de especies vegetales, existen aproximadamente 36 000 (González y Smith 1998).
La diversidad cultural se puede percibir a través de las manifestaciones culturales de las 62 etnias que existen en México (Consejo Nacional de Población 2004) y de la población mestiza. La interacción entre estas tres fuentes de diversidad (ambiental, vegetal y cultural), particularmente en el ámbito agrícola, dio como resultado la generación de un considerable nivel de variación genética en aquellas especies aprovechadas por el hombre, dando origen a lo que hoy se conoce como variedades criollas (más correctamente, poblaciones nativas). Un ejemplo claro de este proceso lo es el maíz: ¿cuántas poblaciones nativas de este producto existen? No se sabe con precisión, pero se puede hacer un pequeño ejercicio matemático para tratar de dar respuesta a tal pregunta: según información proporcionada por Nadal (2000), se estima que en México 3.15 millones de agricultores cultivan este grano; de ellos, aproximadamente dos millones emplean poblaciones nativas; si cada uno conserva y utiliza un promedio de entre dos y tres materiales, potencialmente se tienen entre cuatro y seis millones de poblaciones nativas, las cuales no serán extremadamente diferentes entre ellas, pero sí mostrarán un espectro de variación amplio y continuo.

El por qué se ha formado un número tan grande de poblaciones nativas encuentra su explicación en la selección, tanto la impuesta por el hombre y la mujer del campo, como por la generada por los factores bióticos y abióticos que condicionan la producción de cultivos en la gran cantidad de pequeños valles (microrregiones) en los que se siembra maíz. Producto del trabajo desarrollado durante poco más de 40 años en diferentes microrregiones del país, Muñoz (2003) demuestra y concluye que en cada microrregión donde se cultivan maíces nativos, es factible agrupar la variabilidad presente en lo que él define como un _patrón varietal_. Para entender mejor este concepto se explicarán primeramente sus elementos: en cada microrregión existen grupos de poblaciones nativas de maíz que los agricultores han ido seleccionando y manteniendo, tanto para hacer frente a los diferentes regímenes higrotérmicos y potenciales ambientales bajo los cuales desarrollan su actividad productiva, como para dar respuesta a diversas necesidades de uso.

Cada grupo de poblaciones representa un componente del patrón varietal; estos componentes difieren entre sí en cuanto a precocidad (calculable a partir del número de días transcurridos al 50 % de floración femenina), color del grano (blanco, amarillo, azul, rojo y colorado, etc.) como se muestra en la Figura E.5.1 y, en menor medida, el uso que se les da. Muñoz (2003) agrega que cada componente del patrón varietal se siembra en un sitio específico de la microrregión: llano, lomerio, ladera, cima, y en un periodo también específico, el cual depende de la humedad del suelo, las temperaturas y la altitud del lugar. A cada sitio con su régimen higrotérmico se le llama estrato o nivel ambiental. A partir de estas definiciones se construye el concepto de _patrón varietal_, que se define como el sistema que conjunta los grupos de poblaciones (componentes), los estratos o niveles ambientales y las relaciones entre ellos. Al momento, los patrones varietales descritos son los de Valles Altos (López y Muñoz 1984), Mixteca Oaxaqueña (Muñoz 1987), Meseta Purépecha (Gil et al. 1995), Tierra Caliente, Mich. (Romero y Muñoz 1996), Valle de Serdán, Pue. (Taboada 2000) y la Meseta Comitche (Gabino 2001).
En Puebla se ha identificado los patrones varietales presentes en las dos regiones más importantes en cuanto a producción de maíz: el Valle de Puebla y el Valle de Serrán.

En lo que respecta al primero, Gil et al. (2007) exponen que se ubica en la parte centro-oeste del estado, correspondiendo prácticamente al área que ocupa el Distrito de Desarrollo Rural (DDR) 05 Cholula, con excepción de siete municipios. Los mismos autores, citando a CIMMYT (1974), indican que el valle se extiende desde los 18° 50' hasta los 19° 25' de latitud norte, y de los 97° 55' a los 98° 40' de longitud oeste, y que las altitudes al interior del mismo oscilan desde los 2 100 msnm en la parte más baja (ciudad de Puebla) hasta los 2 700 m para actividades agrícolas. Agregan que está limitado en su porción occidental por los volcanes Iztaclihuatl y Popocatépetl, y en el nororiental por el volcán La Malinche.

Respecto al clima, se señala que en la mayor parte es templado; las temperaturas medias anuales durante la estación de crecimiento del maíz varían de 18.6 °C en mayo, a 16.1 °C en octubre, mientras que las heladas se presentan entre octubre y marzo. La precipitación registrada de abril a octubre varía de 777 a 863 mm y representa el 94 % del total anual. Las primeras aproximaciones a la descripción del patrón varietal aquí existente fueron reportadas por López y Muñoz (1993) y López et al. (1996), quienes encontraron que en la región estuvieron presentes tres estratos de precocidad: precoces (con 89 a 95 días al 50 % de floración femenina), intermedios (con 96 a 100 días) y tardíos (con 101 a 105 días), con una frecuencia respectiva de 33, 48.5 y 18.5 %.

La distribución de los colores de grano fue la siguiente: blanco (76.5 %), azul (11.8 %), pinto (5.9 %), amarillo (2.9 %) y rojo (2.9 %). En un análisis conjunto concluyen que el componente predominante fue lo de maíces de grano blanco y ciclo intermedio (los cuales constituyeron el 43 % del total), seguido por los materiales de grano blanco y ciclos precoz o intermedio, y posteriormente por los azules, que como grupo tendieron a ser precoces; el último componente correspondió a los amarillos y rojos, que fueron netamente precoz. Explican que la mayor frecuencia de poblaciones de grano blanco se debe a la preferencia que por él tienen los consumidores y a su mejor precio de venta; sugieren que la menor frecuencia de poblaciones de grano blanco de ciclo tardío puede atribuirse al retraso en las fechas de siembra, causado a su vez por el abatimiento gradual del manto fréático. Respecto a la presencia de otros colores de grano, la atribuyen a razones de variación del gusto, formas especiales de consumo y prevención de irregularidades climáticas, aunque alertan que particularmente las componentes amarillo y rojo están tendiendo a desaparecer. A partir de estos datos afirman que esta diversidad le permite al agricultor del Valle de Puebla responder a la aleatoriedad de las condiciones ambientales bajo siembras de humedad residual o temporal.

Las principales características del Valle de Serrán se describen a continuación, tomando como referencia el trabajo de Taboada (2000): la región se localiza en la parte Centro Oriente del estado de Puebla, entre los 18° 41' 34" y 19° 20' 11" de latitud norte, y entre los 97° 09' 08" y 97° 46' 00" de longitud oeste. Sus principales áreas agrícolas se encuentran a altitudes entre los 2 300 y 2 600 msnm. El relieve, en su mayoría, corresponde a planicies arenosas, con suelos característicos de depósitos volcánicos recientes. Se tienen dos climas principales: el templado subhúmedo con lluvias en el verano (Cw), en la zona centro, y el seco con lluvias en el verano (BS,kw), en la parte norte y sur. El ciclo de lluvias inicia en marzo y termina en septiembre; la precipitación varía de...
390 a 1 200 mm, con un promedio regional de 590 mm anuales. Las temperaturas medias anuales oscilan entre 10 y 15 °C, siendo los meses más fríos diciembre y enero y los más cálidos mayo y junio. Las heladas se pueden presentar en cualquier época del año, pero regularmente de mediados de septiembre a marzo, en un promedio de 90 días. Las granizadas ocurren durante los meses de abril y mayo con probabilidades de que suceda al menos una durante el ciclo. Los vientos van en dirección noroeste y con una intensidad de moderados a fuertes, presentándose tolvaneras entre febrero y marzo.

El patrón varietal correspondiente a esta zona fue explicado por Taboada (2000), quien encontró que predominaron las variedades de grano blanco (95.2 %), seguidas por las amarillas (2 %), negras y azules (2.4 %), y coloradas (0.4 %); respecto a la precocidad, se notó que los maíces formaron un continuum entre el extremo precoz y el tardío; no obstante, al interior pudieron precisarse tres estratos: precoz (114.2 a 122.9 días al 50 % de floración femenina), intermedio (123 a 129.3 días) y tardío (129.4 a 145 días); el primero representó el 15 % del de las poblaciones nativas, mientras que los dos restantes concentraron el 50 y 35 % respectivamente.

Dada su abundancia, las variedades de grano blanco fueron las que cubrieron más del 90 % de los materiales de cada nivel de precocidad; por su parte, los maíces amarillos tendieron a ubicarse en el extremo precoz mientras que los negros, azules y colorados mostraron un comportamiento variable. Dos aspectos que conviene resaltar son el que ante la casi total desaparición de los maíces de color, los de grano blanco han cubierto todas las fracciones de precocidad y que la mayor frecuencia de éstos se ubica en el estrato intermedio. En relación a esto último, Taboada (2000) apunta que en el Valle de Serdán es evidente la predominancia de las variedades de tipo intermedio (casi todas ellas de grano blanco) y que dado su potencial productivo, podrían cubrir la superficie cultivada con maíces tardíos; no obstante, estas últimas continúan sembrándose en los terrenos con menos restricciones ambientales dado su mayor rendimiento de grano. El por qué se incrementó la frecuencia de poblaciones de grano blanco en la región es atribuido a la mayor facilidad para comercializar este tipo de granos y al aumento del número de productores de transición entre lo tradicional y lo comercial (Taboada 2000); en torno a la extremadamente baja frecuencia de los maíces pigmentados, el autor comenta que muy probablemente es el producto de un proceso de erosión genética (pérdida de poblaciones nativas), situación bastante preocupante, pues prácticamente significa la desaparición de uno o más componentes del patrón varietal, con las implicaciones consecuentes.
La Biodiversidad en Puebla • Estudio de Estado

gradient altitudinal, para colecta de materiales y su identificación taxonómica y de semillas para análisis bioquímico. Diecinueve poblaciones de Lupinus fueron muestreadas en la región de estudio (de 1 800 a 4 200 msnm), cuyos rangos de proteína en las semillas fluctuaron de 31.7 a 48.1 %.

En la zona agrícola las poblaciones de Lupinus sp fueron observadas en márgenes de cultivos de maíz asociadas con Cariopsis sp. Galinsoga sp. Lopezia sp. o en áreas no cultivadas en condiciones naturales asociadas con Tajetes sp. Eupatorium sp. Steva sp. y bosques de pino, a partir de los 2 700 msnm.

En la región forestal, las poblaciones de Lupinus spp. fueron abundantes y estuvieron asociadas a bosques de Pinus oaxacanus, Pinus pseudostrobus y en ocasiones, en límites de bosques con cultivos de maíz, desde los 2 856 msnm. A partir de los 3 400 msnm, las poblaciones de Lupinus spp. se encuentran asociadas con bosques de Pinus, Abies, Siniceo sp. y Bacaris sp. Poblaciones abundantes y diferentes fueron localizadas en bosques de Pinus montezumae asociadas con pastizal de Muhlenbergia sp. A la fecha, cuatro especies de Lupinus han sido identificadas en la región de estudio: Lupinus aschernbornii Schauer de 2 800 a 4 200 msnm, Lupinus campestris Cham y Schel (syn. L. pulchellus Sweet) en zonas de alta perturbación, Lupinus exaltatus Zucc. (syn. L. grandis Rose) de 1 800 a 3 700 msnm y Lupinus montanus H.B.K. (syn. L. vaginatus Cham. & Schl. : L. glabrior Rose) de 2 500 a 4 100 msnm. Entre especies, los azúcares solubles de las semillas variaron de 1.52±0.45 a 2.36±0.13 mg g⁻¹ para glucosa, 0.78±0.21 a 1.52±0.34 mg g⁻¹ para fructosa y de 0.54±0.03 a 1.65±0.12 mg g⁻¹ para almidón. Los resultados obtenidos permitirán identificar a la o las especies de lupino con mayor contenido proteico y con potencial para iniciar su proceso de domesticación.

Literatura Citada

Boa E. 2004. Los hongos silvestres comestibles; perspectiva global de su uso e importancia para la población. FAO, Roma.

Sistema Montes Eva-Zavala Cordillera Abad, M. patrón y Sutton: 42

Lázaro, G.C. 2008. Manejo y caracterización de las poblaciones de gallinas de traspasio en la Trinitad Tiquaunais...
Vargas L. S., J.S. Hernández, J. de D. Guerrero, J.L. Zaragoza y G. López. 2007. Potencial y limitaciones de la producción...

Boletín de variedades recomendadas de los principales cultivos, como indicaciones para las épocas de siembra. Consultado el 7 de noviembre de 2008.

Cultivo de maíz en un paisaje de matorral xerófilo con cactus columnares, San Juan Raya, Puebla.
Foto: Miguel Ángel Sicilia / Banco de imágenes de CONABIO.
INTRODUCCIÓN

La apropiación de los recursos naturales se lleva a cabo de forma directa, como es la producción de alimentos, medicinas, cosméticos, materias primas para la industria, y de forma indirecta, como la producción de oxígeno y absorción de carbono, la regulación del ciclo hidrológico y el clima, y la conservación de suelos. El resultado del uso de los recursos naturales y de la biodiversidad para nuestra especie es, por lo tanto, la obtención de beneficios culturales, económicos y sociales, entre los más importantes (Carabias et al. 1994).

Una buena proporción de la población nacional, y del estado de Puebla, se considera en estado de pobreza. El crecimiento poblacional, la sustitución de vegetación primaria para la ampliación de la frontera agrícola y ganadera y el desarrollo urbano, entre otros factores, ha provocado un uso indiscriminado de los recursos naturales y de la biodiversidad, teniendo como consecuencia que su disponibilidad ya no sea suficiente. Otro factor que ha influido es la falta de ingresos económicos debido a la carencia de proyectos productivos viables para las comunidades rurales, disminuyendo la posibilidad de que las familias de estas zonas tengan los recursos para acceder a la compra de productos básicos como son la carne de animales domésticos y la adquisición de carbón; es por esta razón que las comunidades indígenas, rurales o rancherías se ven en la necesidad de usar los recursos naturales principalmente a través de su extracción para uso doméstico, con el fin de permitir su subsistencia y en algunos casos, se ha generado que se dé un uso irracional, como la tala y la cacería clandestina o no regulada, afectando de manera directa a las poblaciones de flora y fauna silvestre; la consecuencia es la disminución en la distribución y abundancia de las poblaciones silvestres de flora y fauna, llevándolas a la extinción local o regional (Primack 1993; Meffe y Carroll 1997).

Considerando lo anterior, se describen a continuación los usos de la biodiversidad y los recursos naturales en el estado de Puebla, y se muestra un diagnóstico de la situación que presentan con el fin de identificar el potencial de especies prioritarias de uso, así como la propuesta de alternativas productivas viables para las condiciones de la entidad.

SERVICIOS AMBIENTALES

La biodiversidad provee de importantes bienes y servicios a la especie humana. Se clasifican en dos grandes grupos: los de apropiación directa, como son la producción de alimentos, medicinas, cosméticos, materias primas para la industria, y los de uso indirecto como la producción de oxígeno y absorción de carbono, regulación de los ciclos hidrológicos y el clima, y conservación de suelos, entre los más importantes. El uso y apropiación de la biodiversidad ha dado como resultado importantes beneficios culturales, económicos y sociales (Carabias et al. 1994).

Los ecosistemas que funcionan en condiciones óptimas, proporcionan flujos de agua limpia y en cantidades confiables, suelos productivos, un clima relativamente predecible y muchos otros servicios, que están bajo creciente presión en todo el mundo. En la Evaluación de los Ecosistemas del Milenio, se concluyó...
que más del 60% de los ecosistemas del mundo se están usando de manera no sostenible (Chapela y Mendoza 2000).

Actualmente, existe un enfoque de desarrollo que considera los servicios ambientales y que busca básicamente el equilibrio entre el desarrollo socioeconómico de las poblaciones humanas y el mantenimiento de la biodiversidad y los recursos naturales. Sin embargo, parece que la humanidad aún no valora adecuadamente su importancia, pues el deterioro y la desaparición de la biodiversidad continúan a un ritmo sin precedentes (Boyd y Banzhaf 2006).

Algunos de los bienes que se explotan económicamente, y sobre los que existe información, son principalmente recursos naturales usados como insumos para la producción de productos pesqueros, madera, medicinales, derivados de la biodiversidad, plantas ornamentales, artesanías e información procesada sobre biodiversidad, que se convierte en fuente de ingresos directos, en el caso de que se vendan y se encuentran asociados a actividades como el turismo (Figura 6.2) (Harlan 2000).

Usos del agua y situación de las cuencas hidrológicas

Ma. Concepción López Téllez

La disponibilidad de agua para su aprovechamiento es otro de los importantes servicios ambientales que proveen los ecosistemas y del cual el ser humano depende; su disponibilidad y calidad obedecen a una gran cantidad de factores físicos, químicos y biológicos.

En este sentido, México se caracteriza porque más de la mitad de su superficie está cubierta por zonas áridas y semiáridas, en las que el 67% de las lluvias se presentan en cuatro o cinco meses (junio a octubre) de forma torrencial, lo que dificulta su aprovechamiento. Aunado a lo anterior, la mayor concentración de las zonas urbanas se encuentran ubicadas en la parte centro y norte del país (77% de la población), zonas donde sólo se genera el 32% del escurrimiento natural ocasionado por la lluvia, en contraste con el 68% de la zona sureste y que sólo concentra el 23% de la población (CNA 2001, Ocampo et al. 2008).

Figura 6.1 Selva baja caducifolia como muestra de ecosistema generador de servicios ambientales (Foto: Concepción López).
El estado de Puebla posee recursos hidrológicos superficiales y subterráneos con un aporte anual de alrededor 5 000 mm de agua, que al igual que en el resto del país, no se encuentran distribuidos uniformemente, ya que existen regiones como la Sierra Norte donde se presentan abundantes corrientes superficiales (Figura 6.2), mientras que en la Mixteca Poblana las lluvias son escasas y estacionales (CNA 2003).

En relación a la distribución del agua subterránea, se presentan acuíferos como el de la cuenca de Oriental o la parte noroccidental del Valle de Puebla con disponibilidad suficiente, comparado con acuíferos de las zona de Tecamachalco, Palmar del Bravo y Tehuacán, los cuales están sobreexplotados (CNA 2003). El acuífero del Valle de Tecamachalco está considerado entre los 100 más sobreexplotados a nivel nacional, seguido por los del Valle de Puebla y la Cuenca Libres-Oriental, que presentan en la actualidad reservas muy escasas (CNA 2003).

El territorio poblano se caracteriza por presentar una accidentada topografía que provoca que los escurrimientos de la región norte no puedan ser aprovechados extensivamente y en su mayor parte escapan hacia el estado de Veracruz.

En las regiones hidrológicas del estado de Puebla como son La Región Hidrológica Río Balsas, Tuxpan-Nautla, la del Papaloapan y la del Río Pánuco, las tres primeras abarcan la mayoría de la superficie de la entidad (99.75 %). La región que registra la mayor precipitación de lluvia, entre 1 500 a 3 000 mm al año, es la de Tuxpan-Nautla. En general se propician escurrimientos aproximados de 6 697 mm³ anuales, representando casi el 60 % del escurrimiento virgen de toda la entidad (INEGI 2009). Así mismo, en la región Papaloapan se ha calculado que el volumen estimado de escurrimiento anual es de 3 116 mm³, que representa el 28 % del escurrimiento virgen. El 78 % del agua en la entidad poblana es utilizada...
principalmente para la actividad agrícola, seguida de la actividad urbana (10 %) y el resto para la actividad industrial; en lo que respecta al uso percapita del vital líquido en la entidad, se ha calculado que en promedio cada persona utiliza 300 litros aunque con 60 se cubrían las necesidades elementales (Carmona 2009); el uso excesivo de este recurso ha provocado que los 180 pozos de la Región de Nealtican y Xoxtla sean insuficientes para abastecer los más de dos millones de habitantes que tiene la ciudad (Carmona 2009).

El crecimiento demográfico ha traído como consecuencia una lista de problemas relacionados con el uso del agua como son las descargas de aguas negras, la sobreexplotación de acuíferos y la deforestación, que han dado como resultado: a) una disminución en la calidad del agua, b) la eutrofización de cuerpos de agua debido al alto contenido de materia orgánica c) pérdida del caudal de ríos y arroyos y d) azolvamientos de drenajes naturales. Son impactos que no sólo afectan a las actividades humanas sino también a las comunidades de plantas y animales que se abastecen del vital líquido (CNA 2003).

La mayoría de los principales ríos están contaminados, ya que sus afluentes traen agua limpia proveniente de manantiales y aguas negras no tratadas de usos municipales, industriales, diversos comercios, de servicios, usos agrícolas, pecuarios, domésticos y en general de cualquier otro uso (Silva et al. 2002). Esta contaminación es considerada de gravedad, de acuerdo a la Norma Oficial Mexicana (NOM127-SSA1-2000) (DOF 2000), por lo que urge tomar medidas drásticas y desarrollar estrategias de prevención.

Esta situación demanda llevar a cabo acciones administrativas orientadas a una política sobre el agua como un recurso limitado ante necesidades múltiples, ya que millones de personas, y en general todas las especies, dependemos de los servicios ecosistémicos de las cuencas hidrológicas, contribuyendo de manera directa a la salud de los sistemas ecológicos; se requiere de la asignación eficiente de agua por medio de una valoración de los diferentes usos a los que puede dedicarse este recurso, de tal manera que se permita a la sociedad conocer en qué actividades se puede usar la misma, así como la gestión para la promoción en la distribución equitativa de los costos y beneficios, la eficiencia, sostenibilidad, legitimidad, responsabilidad, descentralización y participación del líquido, que permita obtener los mayores beneficios económicos, tanto para las actividades humanas, como para la estimación del valor económico de los ecosistemas.

Usos para acuicultura y pesca

El estado de Puebla posee gran diversidad de fauna dulceacuícola, debido a la conjunción de varios factores como la gran variedad en la geografía física, la adaptación de varios grupos marinos a corrientes de agua dulce y la presencia de grandes sistemas de lagos que han favorecido el desarrollo de cuerpos de agua (De la Vega 2003).

Los peces dulceacuícolas de Puebla tienen su origen en familias originarias tanto de Norteamérica (Cyprinidae, Catostomidae, Ictaluridae) como de Centro y Sudamérica (Characidae, Poeciliidae, Cichlidae) (Fernández com. pers.). En el estado predomina la cuenca del río Balsas y sus afluentes, en donde actualmente existen 21 especies ictícas pertenecientes a 8 familias y 16 géneros, cuatro de las cuales son endémicas (19 %), cuatro nativas (19 %) y trece exóticas (62 %). La especie representativa es un cíclido endémico llamado mojarra criolla (Cichlasoma isticlum) (De la Vega 2003).

El consumo per cápita de productos pesqueros en México es de alrededor de 10.7 kg y en el estado de Puebla es de 2.95 kg, este consumo es considerado como rezago, la entidad ocupa el segundo lugar nacional en producción de trucha arcoiris, con la participación de más de 60 unidades de producción (Figura 6.3), dentro de las cuales se encuentra la granja más grande del país. Las principales cadenas productivas del estado en materia de acuicultura son: trucha, tilapia, carpa, bagre, acamaya, caricol, langosta, camarón, acocil, ajolote, almeja perla de río, rana toro, lobina y pescado blanco (SDR 2007). La mayoría de estas especies son introducidas, por lo que se considera que conllevan numerosos riesgos, entre los que destacan la alteración del hábitat de las especies nativas, su depredación y, en algunos casos, la transmisión de enfermedades por medio de hongos y bacterias; además de la
presión que ya tienen estas especies autóctonas por factores como la destrucción del hábitat, la desecación de cuerpos de agua y la degradación de la calidad del agua por actividades agrícolas, forestales, industriales y domésticas (De la Vega 2003).

La última estadística oficial disponible del sector, indica que la producción total acuícola y pesquera del Estado en el año 2006 es del orden de 5 286 toneladas, destinadas casi en su totalidad para consumo humano directo (Gaspar-Dillanes 2005).

El volumen principal reportado corresponde a carpa producida en presas y represas, que en algunos casos se origina mediante programas de resiembra. El Cuadro 6.1 muestra las diferentes actividades de acuacultura y pesca en el estado, además de los municipios y la producción obtenida anualmente.

La actividad pesquera en el estado se realiza principalmente en granjas piscícolas, aunque también hay actividades deportivas con el aprovechamiento de especies como la lobina, trucha y mojarra, principalmente.

El establecimiento de estas granjas con especies exóticas genera un riesgo potencial para las poblacio-

nes de especies ictícas nativas, agregándosele también las actividades antropogénicas. Existen especies que se encuentran en peligro de extinción por la introducción de especies exóticas. Es particularmente preocupante la situación de los aterinidos de la región oriental de Puebla y de la laguna de Almoloya en Chignahuapan. *Menidia ferdenbueni* está siendo desplazada por truchas, carpas y poecilidos; *Menidia alchichica letholepis* y *Menidia alchichica squamata* por truchas. También hay algunas afectaciones por disminución de los mantos freáticos, por obras de infraestructura que alteran los flujos naturales del agua y por la sobrepesca de algunas especies, principalmente de aquéllas que viven en ríos con lechos rocosos donde los peces se esconden y para pescarlos se usan venenos, explosivos o descargas eléctricas (Fernández com. pers.).

Es necesario plantear estrategias de conservación de los cuerpos de agua de la entidad, que conduzcan a la protección de la calidad del agua y del hábitat, favoreciendo así la flora y la fauna dulceacuícola; además se requiere de la generación de una normatividad que regule la explotación de actividades relacionadas con el manejo de estos sistemas.
Cuadro 6.1 Acuacultura y pesca con sus respectivas producciones anuales, por municipio, en el estado de Puebla.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Producción anual</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucha</td>
<td>866.31 T</td>
<td>Sta. Rita, Tlahuapan, Zacatlán, Huachinango, Chignahuapan, Chilchotla, Querétaro, Atlixco, Zacapoaxtla, Calpán, Teziutlán, Tlanguismanalco</td>
</tr>
<tr>
<td>Tilapia</td>
<td>745.58 T</td>
<td>Jolalpan, Teotlalco, Chietla, Izúcar de Matamoros, Paxtla, Tecamachalco, Tehuitzingo, Cuayucán de Andrade, Huaytamalco, Ayotoxco de Guerrero</td>
</tr>
<tr>
<td>Carpa</td>
<td>3,617.63 T</td>
<td>Aquixtla, Chignahuapan, Tetela de Ocampo, Atlixco, Ixtacamactitlan, San Martín Texmelucan, Chietla, Chiautla de Tepan, Vicente Guerrero, Zoquitlán</td>
</tr>
<tr>
<td>Bagre</td>
<td>12.6 T</td>
<td>Jolalpan, Teotlalco, Chiautla de Tepa, Chietla, Cuayuca de Andrade, Coatzingo</td>
</tr>
<tr>
<td>Acamaya</td>
<td>No determinada</td>
<td>Tenampulco, Hueytamalco, Cuetzalan del Progreso, Ayotoxco de Guerrero, Pahuatlán, Francisco Z. Mena, Pantep, Venustiano Carranza, Jalpan, Xicotepec</td>
</tr>
<tr>
<td>Caracol Tegogolo</td>
<td>100 Kg</td>
<td>Teziutlán, Chietla, Atlixco</td>
</tr>
</tbody>
</table>
Continúa cuadro 6.1

<table>
<thead>
<tr>
<th>Especie</th>
<th>Producción anual</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langosta</td>
<td>500 Kg</td>
<td>Coatzingo, Jolalpan, Chietla, Izúcar de Matamoros, Piaxtla, Tecomatlán</td>
</tr>
<tr>
<td>Camarón</td>
<td>9.5 T</td>
<td>Jolalpan, Zapotitlán Salinas</td>
</tr>
<tr>
<td>Acocil</td>
<td>1 T</td>
<td>Huauchinango, Zacatlán, Chignahuapan, San José Chiapa, Quirimixtán, Santa Ríta Tlahuapan, Tecomatlán, Jolalpan, Izúcar de Matamoros</td>
</tr>
<tr>
<td>Ajojote</td>
<td>50 Kg</td>
<td>Aljojuca, Tlachichuca, Zacatlán, Chignahuapan</td>
</tr>
<tr>
<td>Almeja Perla de Río</td>
<td>No Determinada</td>
<td>Tecomatlán, Jolalpan, Chiautla de Tapia, Huehuetlán El Chico, Chietla, Izúcar de Matamoros, Tlapa, Xicotepec, Hueytamalco</td>
</tr>
<tr>
<td>Rana Toro</td>
<td>No Determinada</td>
<td>Xicotepec, Hueytamalco, Tecomatlán, Chiautla de Tapia, Huehuetlán El Chico, Jolalpan, Izúcar de Matamoros, Tlapa</td>
</tr>
<tr>
<td>Lobina</td>
<td>24 T</td>
<td>Piaxtla, Tepexco, Atláco, Puebla, Chietla, Epátlan, Guadalupe Victoria</td>
</tr>
<tr>
<td>Pescado Blanco</td>
<td>21 T</td>
<td>Vicente Guerrero, Chignahuapan</td>
</tr>
</tbody>
</table>

Fuente: SDR, Gobierno del Estado de Puebla, 2007
Manejo del suelo en Puebla
Yosaira Pérez Hernández y Ma. Concepción López Téllez

Los suelos constituyen uno de los recursos naturales de mayor importancia para la población, por lo que su degradación constituye un grave problema.

En la actualidad, alrededor del 90 % de los suelos en México presenta distintos grados de erosión, producto del mal manejo como consecuencia de realizar prácticas no óptimas al uso natural de este (Quesada 2009). Para el caso particular de Puebla la mayoría de las estimaciones sobre el estado actual de los suelos son de carácter cualitativo y no existe una metodología estandarizada ni criterios uniformes (Ruiz et al. 1998).

Determinar y valorar la magnitud de la erosión es importante para poder planificar y proyectar las medidas que permitan cuidar los suelos; para evaluar su magnitud se debe considerar factores ecosistémicos como el clima, vegetación, tipo y características de los suelos, topografía y uso del suelo. Sin embargo, la determinación, la valoración y planificación del cambio del uso suelo constituyen una tarea difícil y laboriosa (Ruiz et al. 1998).

A nivel nacional, la pérdida del suelo se da principalmente por la erosión hídrica (56 %), la erosión eólica (28 %), por degradación química (12 %) y por degradación física (4 %). La ausencia de una política agraria con énfasis en el cuidado y conservación de los suelos y su entorno, ha acelerado los procesos erosivos en muchas regiones del país y como consecuencia, la desertificación (Mier y Reyes 1994).

Se requiere de la generación de alternativas sustentables del uso y manejo del suelo, con el fin de evitar cultivos agrícolas en zonas con pendientes abruptas y desarrollar en las áreas con menos pendientes un programa de capacitación agrícola en el que se tengan en cuenta las condiciones naturales del entorno, así como rescatar el manejo tradicional sustentable.

Además, es importante realizar obras y prácticas de conservación del suelo en áreas degradadas así como fomentar el uso de fertilizantes orgánicos, evitar prácticas no aptas como la tala y desmonte desmedido, las quemas no controladas, la contaminación por productos químicos, entre las más importantes. Se trata de actividades que deben de ser orientadas y financiadas por los gobiernos municipales, estatales y federales, instituciones científicas, organizaciones no gubernamentales y empresas privadas que estén bien orientadas y canalizadas a la planificación del uso del suelo de acuerdo a su aptitud natural (Villegas-Soto et al. 1997, Mier y Reyes 1994, Ruiz et al. 1998, Careaga, et al. 2004, Alvarado et al. 2006).

Uso agrícola
Salvador Romero Castañón y Bernardino Pérez Rentería

El 28 % de la superficie poblana es utilizada para la siembra de cultivos en sus diferentes ciclos y modalidades (temporal, nómada y riego). La agricultura de temporal se desarrolla en lugares con topografías muy variadas, que van desde las partes planas de los valles, hasta lugares con pendientes pronunciadas que forman parte de la sierra, así como en lomeros y grandes llanos. La agricultura nómada se realiza en terrenos poco propicios, con fuertes pendientes, suelos peligrosos y poco profundos. Esta actividad es básicamente una agricultura de subsistencia, donde se tumba y se
La diversidad de condiciones agroclimatólogicas del estado permite que sean cultivadas una gran variedad de especies agrícolas, del orden de 108 cultivos. El Cuadro 6.2 muestra las superficies sembrada y cosechada, el volumen y el valor de la producción agrícola por tipo de cultivo, así como los principales cultivos agrícolas para el año 2007.

Cuadro 6.2 Cifras de Estadística Agrícola Estatal del año 2007. Se muestra la superficie sembrada y cosechada, volumen y valor de producción agrícola por tipo de cultivo y principales cultivos agrícolas.

<table>
<thead>
<tr>
<th>Tipo de Cultivo</th>
<th>Superficie sembrada (ha)</th>
<th>Superficie cosechada (ha)</th>
<th>Volumen (tons)</th>
<th>Valor (Miles de pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivos cíclicos</td>
<td>809 482</td>
<td>721 404</td>
<td>NA</td>
<td>5 976 825</td>
</tr>
<tr>
<td>Cultivos perennes</td>
<td>155 124 a/</td>
<td>152 045 b/</td>
<td>NA</td>
<td>2 752 207</td>
</tr>
<tr>
<td>Maíz Grano</td>
<td>591 213</td>
<td>510 570</td>
<td>942 316</td>
<td>2,519 964</td>
</tr>
<tr>
<td>Caña de Azúcar</td>
<td>13 528</td>
<td>13 528</td>
<td>1 633 014</td>
<td>711 442</td>
</tr>
<tr>
<td>Café Cereza</td>
<td>74 322</td>
<td>74 321</td>
<td>256 399</td>
<td>691 946</td>
</tr>
<tr>
<td>Alfalfa Verde</td>
<td>17 255</td>
<td>17 255</td>
<td>996 893</td>
<td>369 844</td>
</tr>
<tr>
<td>Gladiola (gruesa)</td>
<td>1 073</td>
<td>1 073</td>
<td>1 104 875</td>
<td>361 469</td>
</tr>
<tr>
<td>Frijol</td>
<td>71 471</td>
<td>70 158</td>
<td>47 325</td>
<td>350 508</td>
</tr>
<tr>
<td>Plantas de Ornato (Planta)</td>
<td>547</td>
<td>434</td>
<td>2 727 540</td>
<td>245 556</td>
</tr>
<tr>
<td>Cebofla</td>
<td>3 087</td>
<td>3 085</td>
<td>56 521</td>
<td>177 646</td>
</tr>
<tr>
<td>Papa</td>
<td>3 924</td>
<td>3 657</td>
<td>59 061</td>
<td>172 621</td>
</tr>
<tr>
<td>Tomate Verde</td>
<td>5 208</td>
<td>5 126</td>
<td>54 012</td>
<td>168 197</td>
</tr>
<tr>
<td>Calabacita</td>
<td>4 546</td>
<td>4 490</td>
<td>52 471</td>
<td>167 070</td>
</tr>
<tr>
<td>Elote</td>
<td>14 088</td>
<td>14 088</td>
<td>135 507</td>
<td>160 465</td>
</tr>
<tr>
<td>Zanahoria</td>
<td>2 594</td>
<td>2 588</td>
<td>66 882</td>
<td>158 646</td>
</tr>
<tr>
<td>Naranja</td>
<td>17 030</td>
<td>16 326</td>
<td>169 346</td>
<td>151 340</td>
</tr>
<tr>
<td>Tomate Rojo (Jitomate)</td>
<td>934</td>
<td>927</td>
<td>17 523</td>
<td>139 632</td>
</tr>
<tr>
<td>Resto de los cultivos cíclicos</td>
<td>111 345</td>
<td>105 643</td>
<td>NA</td>
<td>1 600 606</td>
</tr>
<tr>
<td>Resto de los cultivos perennes</td>
<td>32 443</td>
<td>30 181</td>
<td>NA</td>
<td>582 078</td>
</tr>
<tr>
<td>Total</td>
<td>964 606</td>
<td>873 449</td>
<td>NA</td>
<td>8 729 033</td>
</tr>
</tbody>
</table>

Fuente: SAGARPA. Servicio de Información y Estadística Agroalimentaria y Pesquera 2007

Nota: Desde el punto de vista estadístico, el año agrícola es el periodo de dieciocho meses que resulta de la adición de las siembras y cosechas que se realizan en los ciclos agrícolas otoño-invierno y primavera-verano, y de las cosechas de productos de cultivos perennes. Comprende el periodo octubre-diciembre de un año, más el siguiente completo y los meses enero-marzo del año subsecuente. La suma de los totales puede no coincidir debido a redondeo de cifras.

a/ Se refiere a superficie plantada que comprende la plantada en el año agrícola de referencia, la plantada en desarrollo y la plantada en producción.

b/ Se refiere únicamente a la superficie plantada en producción.
Existe una gran diversidad de cultivos agrícolas, producidos en su mayoría de forma tradicional, sin embargo, las altas poblaciones de plagas y enfermedades que presentan actualmente los cultivos han generado el uso indiscriminado de agroquímicos, mal uso de fertilizantes y nutrientes, semillas de mala calidad, generando deterioros en los ecosistemas, contaminación en suelos, agua, aire y alimentos, traslape de generaciones y alta presión de selección, generando así el incremento de plagas y enfermedades de cultivos.

Por lo tanto, es necesario recuperar el manejo tradicional y generar nuevas técnicas que se consideran apropiadas para el manejo sustentable del suelo cultivado, tales como bordos a nivel en contorno en zanjas aguas arriba, la labranza de conservación, el cultivo en calles, la agroforestería, y el uso de la terraza de muro vivo, que se utiliza ya en algunos sitios del municipio de Tehuacán.

Uso ganadero

Salvador Romero Castaño, Jorge E. Hernández Hernández y Oscar A. Villameal Espino Barros

El uso del suelo por parte de la ganadería en Puebla se da básicamente por sistemas pastoril bovino (Rapo 1997), dividido en sistemas extensivos, sistemas de estabulación parcial o total y sistemas mixtos (Hernández, 2000). El Cuadro 6.3 nos muestra las diferentes especies pecuarias en el estado de Puebla, con sus producciones anuales y los principales municipios donde se llevan a cabo estas explotaciones.

Existe una gran diversidad de especies nativas de las que se aprovecha el ganado, 28 plantas (70 %) corresponden al tipo arbóreo y las 12 restantes corresponden al tipo arbustivo (30 %), 20 % brindan frutos naturales que son comestibles tanto para el hombre como para los caprinos, el 60 % tienen uso maderable, el 17.5 % son medicinales y por último, el 12.5 % tienen uso industrial (Hernández et al. 2005). Del total, 24 especies leñosas son endémicas (60 %) (Hernández-Hernández 2006).

El pastoreo del ganado bovino tiene un profundo costo ecológico, que puede resumirse en la alteración de la composición de especies de una comunidad biológica, interferencias en el funcionamiento de los ciclos de nutrientes y en la sucesión vegetal, así como alteraciones de la estructura del ecosistema.

Debido a esta problemática se puede adoptar alternativas para disminuir el impacto sobre el ecosistema, tales como explotación de ganado con doble propósito el cual deteriora menos el ambiente,

Cuadro 6.3 Especies pecuarias con sus respectivas producciones anuales en los principales municipios del estado de Puebla

<table>
<thead>
<tr>
<th>Especie</th>
<th>Producción anual y/o inventario</th>
<th>Municipios</th>
</tr>
</thead>
</table>
| Bovino carne | 32 579 T | Huauchinango
Tepeca
Tepeyahualco
Juan N. Méndez
Tehuacán
Francisco Z. Mena
La Fragua
Jopala
San Salvador El Secco
Huehuetán El Chico |
| Ovino carne | 273 000 kg 878 300 cabezas | Tlacotepec de B. Juárez
Zacatlán
Oriental
Libres
Tetela de Ocampo
Chalchicomula de Sesma
Tecamachalco
Tepeaca
Ixtacamaxtitlán
Puebla |
Continúa cuadro 6.3

<table>
<thead>
<tr>
<th>Especie</th>
<th>Producción anual y/o inventario</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprino carne</td>
<td>3 466 T</td>
<td>Zacapala, Santa Inés Ahuatempan, Palmar de Bravo, Tlacotepec de B. Juárez, Tepanco de López, Atexcal, Ixcaquixtla, Acatzingo, Molcajac, Juan N. Méndez</td>
</tr>
<tr>
<td></td>
<td>1 487 136 cabezas</td>
<td></td>
</tr>
<tr>
<td>Porcinos</td>
<td>7 782.303 T</td>
<td>Atlíxco, Puebla, Tepeaca, Huejotzingo, San Andrés Cholula, Tepeyahualco, Palmar de Bravo, Tecamachalco, Tepanco de López, Tlacotepec de B. Juárez</td>
</tr>
<tr>
<td>Conejos</td>
<td>290 T</td>
<td>Puebla, San Martín Texmelucan, Cholula, Tezutlán, Chignahuapan, Zacatlán, Tepeyahualco, Juan C. Bonilla, Atlíxco</td>
</tr>
<tr>
<td>Cerdo pelón mexicano</td>
<td>No determinada</td>
<td>Hueytamalco, Tenampulco, Ayotoxco de Guerrero, San José Acateno, Cuetzalan, Ixtapan, Tuzumapan de Galeana, Ixtepec, Zapotitlán de Méndez, Huitzilán de Serrán</td>
</tr>
<tr>
<td>Búfalo de agua</td>
<td>No determinada</td>
<td>Venustiano Carranza, Chiautla de Tapia, Ayotoxco de Guerrero</td>
</tr>
<tr>
<td>Avestruz</td>
<td>No determinada</td>
<td>Puebla, San Pedro Cholula, San Nicolás de los Ranchos, Domingo Arenas, Tochitepec, Atlíxco, Libres, Acatlán de Osorio, Xicotepac, Santa Rita Tlahuapan</td>
</tr>
</tbody>
</table>
Continúa cuadro 6.3

<table>
<thead>
<tr>
<th>Especie</th>
<th>Producción anual y/o inventario</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aves</td>
<td>155 280 T (carne)</td>
<td>Acatlán, Tehuacán, Huizilotepec, Izúcar de Matamoros, Oriental, Altepexi, Atoyatepan, Palmar de Bravo, Quecholac, Ahuatempan</td>
</tr>
<tr>
<td></td>
<td>455 106 T (huevo para plato)</td>
<td></td>
</tr>
<tr>
<td>Guajolote</td>
<td>142 281 T</td>
<td>Atlixco, Puebla, Tecamachalco, Tochtepec, Coyomeapan, San Gabriel Chilac, Tehuacán, Chignahuapan, Xicoxtépetl, Tetela de Ocampo, Zacatlán</td>
</tr>
<tr>
<td>Pato</td>
<td>No Determinada</td>
<td>Atlixco, San Pedro Cholula, Puebla, Oriental, Libres, Chignahuapan, Zacatlán, Aquixtla, Ahuazotepec, Tezutlán</td>
</tr>
<tr>
<td>Ganso</td>
<td>No Determinada</td>
<td>Atlixco, San Pedro Cholula, Puebla, Oriental, Libres, Chignahuapan, Zacatlán, Aquixtla, Ahuazotepec, Tezutlán</td>
</tr>
<tr>
<td>Bovino leche</td>
<td>367 922 000 L</td>
<td>Tecamachalco, Tecali, Tochtepec, Palmar de Bravo, Tlacoxtla, de B. Juárez, Tepexic de Ocotlan, San Matías Tlalancaleca, Tlaltenango, Atoyatepan</td>
</tr>
</tbody>
</table>
Capítulo 6 • Usos de la biodiversidad en el Estado de Puebla

Continúa cuadro 6.3

<table>
<thead>
<tr>
<th>Especie</th>
<th>Producción anual y/o inventario</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprino leche</td>
<td>1 412 000 L</td>
<td>Zacapala, Santa Inés Ahuatempan, Palmar de Bravo, Tlacotepec de B. Juárez,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teponco de López, Atecial, Ixacaquixtl, Acatzingo, Molcaxic, Juan N. Méndez</td>
</tr>
<tr>
<td>Chinchilla</td>
<td>No determinada</td>
<td>Puebla</td>
</tr>
<tr>
<td>Ovino lana</td>
<td>2 589 000 kg lana</td>
<td>Chignahuapan, Zacatlán, Tetela de Ocampo, Xalacaxaltitlán, Ahuazotepec,</td>
</tr>
<tr>
<td></td>
<td>878 300 cabezas</td>
<td>Tlatlaquitepec, Huachinango, Kutetelco</td>
</tr>
<tr>
<td>Codorniz</td>
<td>No determinada</td>
<td>San Pedro Cholula, Libres, Teotitlán, Chignahuapan, Cohuacán, Ahuazotepec,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oriental, Huehuetlán, El Chico, Zacatlán</td>
</tr>
<tr>
<td>Abejas</td>
<td>3 048 T de miel</td>
<td>Acatlán de Osorio, Palmar de Bravo, Acatzingo, Puebla, Amozoc, Tepeyahualco,</td>
</tr>
<tr>
<td></td>
<td>100 000 Unidades</td>
<td>Atlixco, Atitzihuacán, Cholula, San Salvador El Seco</td>
</tr>
<tr>
<td>Abeja melipona</td>
<td>De medio a un litro de miel anual</td>
<td>Cuetzalan, Teziutlán, Francisco Z. Mena, Pantepec, Tepexco, Hueytamalco,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zapotitlán de Méndez, Tlatlaquitepec, Guadalupe, Zoquiapan</td>
</tr>
</tbody>
</table>

Fuente: SDR y Gobierno del Estado de Puebla 2007
implementación de ganadería diversificada como ya se está realizando en algunas zonas de la Mixteca Poblana y con el aprovechamiento de fauna silvestre en conjunto con el ganado doméstico (Villarreal 2006); este esquema se puede complementar con sistemas agrosilvopastoriles.

Sistemas agrosilvopastoriles

Los sistemas agroforestales son formas de uso y manejo de los recursos naturales en los cuales especies leñosas (árboles, arbustos y palmas) son utilizadas en asociaciones deliberadas con cultivos agrícolas o con animales en el mismo terreno, de manera simultánea o en secuencia temporal (CATIE 1986).

El sistema agrosilvopastoral agrupa un conjunto de técnicas de uso de la tierra que implica la combinación o asociación de un componente leñoso (forestal), con ganadería y/o cultivos en el mismo terreno, con interacciones ecológicas o económicas (Nair 1989); el componente vegetal proporciona madera para combustible y el forraje protege el suelo y a los animales (Sansoucy 1995).

Un ejemplo exitoso de agroforestería en el estado de Puebla es el de Zihuateutla, en donde se tiene un sistema de café-bracatinga (*Mimosa scabrella*), que ha demostrado que la producción es rentable y que la bracatinga es el elemento que da más apoyo por sus bajos costos de producción y altos beneficios (Cervantes Carrillo et al. 1998).

La Mixteca Poblana cuenta con una riqueza natural de plantas arbóreas y arbustivas, muchas de ellas pertenecientes a la familia de las leguminosas (Rzedowsky 1994, Hernández-Hernández 2006). Estas leñosas son ramoneadas por los caprinos bajo el sistema de pastoreo extensivo sedentario y trashumante. Este manejo pastoril tendrá que ser sustentado mediante los distintos modelos de agroforestería para favorecer las unidades de producción familiar caprinas (UPF) en la región (Figura 6.5) (Franco 1999, Hernández et al. 2004). Una de las ventajas durante la época de seca, aunque en menor proporción, es la cantidad disponible de biomasa arbóreo-arbustiva perenne con potencial forrajero utilizado por los caprinos y el venado cola blanca (*Odocoileus virginianus*) y en menor medida por otros herbívoros como equinos, bovinos y ovinos, pero muy trascendente el resto del año (Franco et al. 2005, Hernández-Hernández 2006, Villarreal 2006). De una existencia de más de 200 árboles y arbustos correspondientes a la cuenca alta del río Balsas, se realizaron una serie de estudios de identificación, clasificación taxonómica, fenología y uso forrajero de la selva baja caducifolia ubicada en el municipio de Piaxtla. Los resultados obtenidos en relación a los hábitos alimentarios del ganado caprino y el venado cola blanca, muestran 40 y más de 100 especies de

![Figura 6.5 Sistema agrosilvopastoril en la Mixteca Poblana (Foto: Jorge Hernández Hernández).](image)
leñosas consumidas respectivamente. De las 40 especies seleccionadas por los caprinos, el 52.5 % lo constituyen el grupo de las leguminosas (32.5 % conciernen a la familia Mimosoidea, el 12.5 % a la familia Fabaceae y el 7.5 % a la familia Caesalpinioideae), las familias Burseraceae y Convolvulaceae representan el 7.5 % cada una y en menor proporción, las familias restantes como se aprecia en la Figura 6.6.

Figura 6.6 Porcentaje importante de taxones de familias de las plantas arbóreo-arbustivo que consumen los caprinos en las comunidades de Tehuaxtla y Maninalcingo.

Pagos por servicios ambientales
Ma. Concepción López Téllez y Bromio García Sierra

Anteriormente, se ha discutido la importancia y estado actual de los servicios ambientales a nivel mundial; dada estas tendencias, cabría preguntarnos: ¿Qué pasaría si existiera una manera de determinar el valor de los servicios ambientales que proveen estos ecosistemas y después alentar a los beneficiarios a participar para restaurar y mantener los flujos de estos servicios? ¿Tal perspectiva podría crear un incentivo para la restauración y la conservación?

La lógica de conservación económica de los recursos naturales es sustentada por muchos mercados formales e informales que actualmente comercian en las reducciones de gases de efecto invernadero, manglares, contaminación del agua y hábitats de especies amenazadas alrededor del mundo, por ejemplo. En efecto, todos los diversos esquemas que se destacan en este trabajo se sustentan en una simple premisa: los servicios ambientales tienen un valor económico cuantificable que, en consecuencia, pueden ser comunicados para atraer inversiones y prácticas de restauración y mantenimiento. Algo similar sucede con los acuerdos de Pagos por Servicios Ambientales (PSA) en cualquier lugar donde las empresas,
agencias del sector público y organizaciones no lucrativas, han tomado un interés activo en hacer frente a cuestiones ambientales particulares. Estos esquemas proporcionan una nueva fuente de ingresos para el manejo de la tierra, la restauración y las actividades de conservación (Wunder 2006).

La pérdida de los servicios ambientales, a pesar de su importante valor, es fácil de explicar: los dueños de las tierras, al no recibir normalmente ninguna compensación por los servicios ambientales que generan sus parcelas y bosques, carecen de motivación económica para tomar en cuenta esos servicios cuando deciden cómo usarlos. El concepto de pagos por servicios ambientales, es un concepto que se incorpora en el país en el año 2003, como un modelo nuevo para promover la conservación directamente con los dueños de las tierras para que reciban una motivación económica por el cuidado del bosque (Figura 6.7) (Bishop y Landell-Mills 2003, CONAFOR 2007).

En el estado de Puebla, desde hace algunos años se ha implementado el pago por servicios ambientales, que tiene como objetivos contribuir a la conservación y protección de los bosques mediante el apoyo económico a sus propietarios, así como el promover y desarrollar esquemas de mercado en las comunidades rurales, principalmente (CONAFOR 2009). Este programa inició con el pago de servicios ambientales hidrológicos, en una superficie de 5 585 ha, que representan el 0.16 % de la superficie estatal. Sin embargo, desde el 2003 hasta el 2008, se ha incrementado la superficie bajo apoyo, y categorías como captura de carbono, biodiversidad y mejoramiento de sistemas agroforestales, sumando un total de 138 comunidades apoyadas y una superficie de 72 451.61 ha, dando un total del 2.11 % de la superficie de la entidad (Cuadro 6.4) (CONAFOR 2009).

El pago por servicios ambientales es entonces una herramienta política, técnica y financiera para la conservación de los ecosistemas y los servicios que ofrecen; su establecimiento permitirá la protección y regeneración de la cubierta boscosa de la entidad poblana. Aunque es una iniciativa que solo tiene seis años de implementarse en Puebla, la superficie apoyada no ha logrado tener el efecto esperado en la disminución de la pobreza en las zonas rurales e incremento de una mayor superficie a conservar; sin embargo, en las comunidades donde se
Cuadro 6.4 Situación actual del pago por servicios ambientales 2003-2008 para el estado de Puebla.

<table>
<thead>
<tr>
<th>Año</th>
<th>Comunidades Beneficiadas</th>
<th>Hectáreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>19</td>
<td>5 585.84</td>
</tr>
<tr>
<td>2004</td>
<td>59</td>
<td>30 302.71</td>
</tr>
<tr>
<td>2005</td>
<td>16</td>
<td>3 862.26</td>
</tr>
<tr>
<td>2006</td>
<td>5</td>
<td>1 249.93</td>
</tr>
<tr>
<td>2007</td>
<td>21</td>
<td>23 625.25</td>
</tr>
<tr>
<td>2008</td>
<td>18</td>
<td>7 825.62</td>
</tr>
<tr>
<td>Total del estado</td>
<td>138</td>
<td>72 451.61</td>
</tr>
</tbody>
</table>

Fuente: CONAFOR 2009

ha implementado se ha tenido experiencias positivas con grupos sociales que han facilitado el desarrollo de nuevas prácticas y conocimientos sobre el manejo comunitario del bosque para permitir la restauración de la biodiversidad degradada (CONAFOR 2009).

Turismo de naturaleza
Jorge A. Cebada Ruiz, Ma. Concepción López Téllez y Beatriz Herrera López

Cuando se habla de desarrollo turístico sustentable, muchos piensan en función de la moda de un segmento del mercado, es decir, hacer actividades al aire libre, y también en función de ello se adecuan servicios y se crean conceptos como el de “oferta diferenciada de servicios”; lo cierto es que el tema obedece a una problemática con más fondo que forma y, desde la perspectiva de la esfera pública, es aún más complicado virar hacia otro modelo de desarrollo de la actividad turística. Sin duda, la participación es un proceso que debe darse para lograr cambios estructurales, siendo dos actores los importantes en este proceso: gobierno y sociedad. Se ha tomado en cuenta el desarrollo y planificación como proceso de pensamiento y acción de proyección a futuro, además de los procesos normativos estratégicos para el desarrollo (SECTUREP 2007).

Otro concepto importante en la consecución del desarrollo turístico sustentable es resaltar “la participación”, mediante dos formas básicas: en primer lugar, la que genera la toma de decisiones por parte de la población en asuntos de interés general (elecciones, plebiscito, referéndum, así como Consejos de Desarrollo en los gobiernos locales) y, en segundo lugar, las prácticas sociales y políticas que se producen en agrupaciones de distinto tipo en el ámbito social, con intereses y objetivos tan heterogéneos como los propios grupos. De esta forma se puede observar involucrados en actividades sociales a grupos con intereses específicos relativos a necesidades de un sector particular. En la toma de decisiones para gestionar o para obtener respuesta a problemas particulares, la participación es vista como un proceso que incluye dos actores centrales: el gobierno y la sociedad. De forma colectiva e individual es como se participa en el proceso de desarrollo turístico sustentable, política pública planteada por la Secretaría de Turismo del Gobierno del estado de Puebla, pero que sin la participación de todos los actores no será posible. La Comisión Económica y Social de las Naciones Unidas para Asia y el Pacífico señala que la participación tanto de hombres como de mujeres es el punto clave de un buen gobierno. La sociedad necesita estar informada y bien organizada: eso significa libertad de expresión (SECTUREP 2007).

De acuerdo a los lineamientos contenidos en el Programa Sectorial de Turismo 2005-2011 del Estado de Puebla, el objetivo fundamental es: “Establecer las bases del desarrollo turístico del Estado, con lineamientos de sustentabilidad, a través de herramientas adecuadas de planeación que contribuyan
a identificar el potencial turístico de las regiones”. Durante el 2007 se realizaron los trabajos para conformar el Programa de Turismo de Naturaleza 2007-2012 (SECTUREP 2007). En este proceso participaron 180 actores entre empresarios comunitarios, ejidales, particulares, clubes de deporte extremo y operadoras de turismo de naturaleza, actualmente se organizan los trabajos para la elaboración del Plan de Turismo de Naturaleza, documento que servirá de base para orientar las acciones correspondientes a este segmento de mercado y ordenar sistemáticamente esta actividad. El proceso de elaboración del plan contó con la asesoría y orientación de la Secretaría de Turismo Federal, a través de la Dirección de Turismo Alternativo y está respaldado por la Agencia de los Estados Unidos para el Desarrollo Internacional (USAID). Participa en este proceso la Organización de Estados Americanos (OEA) a través de su oficina de Turismo y Competitividad.

El proceso se caracteriza por la activa participación de los actores involucrados en el turismo de naturaleza del estado y de otras regiones que inciden en el desarrollo de esta actividad; por primera vez se reunieron los directores de cuatro de las cinco Áreas Naturales Protegidas (ANPs) en Puebla: Parque Nacional Ixta-Popo, Parque Nacional Pico de Orizaba, Reserva de la Biosfera Tehuacán-Cuicatlán y Cuenca Hidrográfica del Río Necaxa y, junto con otros actores, acordar el rumbo del turismo de naturaleza en Puebla discutiendo y acordando respecto de temas de promoción, comercialización, indicadores, operación y gobierno. Puebla es el primer estado en contar con esta herramienta de planificación a largo plazo (2020) y será referencia para otras entidades del país y de Latinoamérica.

El estado de Puebla presenta una combinación de características físicas, biológicas y culturales que lo hacen un lugar de importancia para desarrollar el turismo de naturaleza o turismo sustentable, en el que se atienden las necesidades de los turistas, mientras que se protege y se fomentan las oportunidades para las futuras generaciones; el turismo alternativo se concibe como un mecanismo hacia la gestión del manejo y aprovechamiento racional de los recursos naturales, de tal manera que mediante la conservación de la biodiversidad sea posible satisfacer las necesidades económicas y sociales, respetando la inte-

gridad cultural, los procesos ecológicos esenciales, la diversidad biológica y los servicios de sostenimiento de los ecosistemas (Ceballos-Lacacián 1991).

Algunos casos donde ya se desarrolla el turismo de naturaleza en el estado de Puebla son la Sierra Norte, Tehuacán y la Sierra Mixteca (Figura 6.8), entre otras, y se han implementado principalmente por iniciativa de las comunidades, acompañadas de las autoridades federales, estatales y locales. Las comunidades, al tomar conciencia de los costos ambientales que conlleva la pérdida de la cubierta forestal, han desarrollado estrategias que permiten la recuperación de los suelos, la repoblación de los bosques y conservar los remanentes naturales que existen, con el fin de incrementar la superficie de los bosques y su aprovechamiento sustentable y con ello el desarrollo de actividades como el turismo de naturaleza, a manera de instrumental para el manejo de los ecosistemas, los recursos naturales y los servicios ambientales que aportan a las comunidades locales (Yanes 2009).

EL PATRIMONIO FORESTAL DE PUEBLA Y SU PROBLEMÁTICA

Salvador Romero Castañón

El patrimonio forestal del estado de Puebla está representado por el 49.4 % del territorio estatal; de este porcentaje la aptitud forestal corresponde al 22.4 %, es decir 770 000 y 628 000 ha (18.25 %)
se encuentran perturbadas (Figura 6.9). En lo que respecta a las zonas forestales, en el estado es posible encontrar tres grandes ecosistemas: el templado-frío (bosques), el tropical (selvas) y las zonas áridas (árido y semiárido) (Mallén et al. 2005).

Ecosistema templado-frío
Los usos más importantes que se dan a las especies de estos bosques es para dos géneros: para el pino (Pinus spp.) del cual se obtiene: madera aserrada, productos celulósicos y contrachapados, postes y leña para combustible; y para el encino (Quercus spp.): madera aserrada, mangos de herramienta, lambrín, parquet, carbón y taninos (CONAFOR 2004, Mallén et al. 2005).

Los bosques de clima templado-frío poseen una enorme capacidad para generar beneficios sociales, económicos y servicios ambientales. Los bosques de Puebla presentan evidencias de perturbación e importante disminución en la calidad y superficie arbolada. Esto se debe principalmente al cambio del uso de suelo, incendios forestales, pastoreo intensivo y talas clandestinas que han provocado la fragmentación del bosque en una superficie estimada en 107 551 ha (CONAFOR 2004, Mallén et al. 2005).

Ecosistema tropical
Los productos de la selva se utilizan en la industria maderera y en gran medida para fines de autoconsumo, como leña para combustible y para utensilios domésticos y artesanales. Las plantas arbustivas y pastos sirven como alimento para el ganado (CONAFOR 2004, Mallén et al. 2005).

La investigación sobre el uso de las especies tropicales es incipiente, sin embargo, se presume un gran valor ecológico en la conservación y formación de suelos, sustento de gran cantidad de especies vegetales y animales, así como en la regulación del flujo de agua. Los cambios de uso de suelo con fines agropecuarios han causado alteraciones y fragmentación de las selvas del orden de 32 358 ha (CONAFOR 2004, Mallén et al. 2005).

Ecosistemas de zonas áridas
Los productos más comunes se consideran como no maderables: fibras, ceras, gomas, resinas, artesanías, plantas medicinales y comestibles, arbustos y pastos para alimento del ganado; se utilizan primordialmente para fines industriales y domésticos (CONAFOR, 2004, Mallén et al. 2005).

Figura 6.9 Bosque de pino en el Volcán Iztacchuatl (Foto: Salvador Romero).
La vegetación árida incluye una gran diversidad de tipos, consecuencia de la variación de microambientes. Aunque por la condición de suelo y clima no son convenientes las prácticas agropecuarias, frecuentemente se realizan cambios del uso de suelo para una agricultura de baja producción y se presenta un pastoreo selectivo sobre las especies más apetecibles, que tienden a desaparecer con esta práctica, dando como resultado la alteración de las condiciones de la vegetación y provocando erosión de diferente grado en los suelos (CONAFOR 2004, Mallén et al. 2005).

Situación de la actividad forestal
El área boscosa de Puebla abarca 770 000 ha, de las que 190 000 tienen potencial para el aprovechamiento forestal maderable. La CONAFOR (2004) reporta que sólo 84 mil ha se encuentran bajo manejo; de éstas, corresponde un 93.2 % a coníferas, 6.4 % a latifoliadas y un 0.4 % a otras especies. La superficie forestal del estado lo ubica en el vigésimo quinto lugar con relación al total nacional (Luna 1994). La superficie reforestada para la entidad en un periodo de once años (1993-2003) se reportó en 75 706.30 ha, lo que representa sólo el 4.3 % del total nacional. En contraparte, de acuerdo con el Inventario Nacional Forestal (2000), la tasa de deforestación anual para la entidad se estima en 10 012 ha, lo que sugiere que la superficie reforestada no es suficiente para contrarrestar y revertir el proceso.

El principal grupo botánico aprovechado son los pines, ya que representa del 66 al 76 % del volumen total autorizado, seguido por el encino con el 10 al 18 % del total y por el oyamel que va del 6 al 15 %; en conjunto, los tres grupos representan el 94 % del total de la producción. Los municipios con mayor producción son Chignahuapan, Zacatlán y Tlatlauquitepec (Mallén et al. 2005).

Aprovechamiento de recursos forestales no maderables
Eunice Cuautle Hernández y Ma. Concepción López Téllez

Los recursos forestales no maderables son una opción viable para el desarrollo de proyectos productivos que permitan a las comunidades rurales obtener ingresos y pueden servir como una estrategia de supervivencia. El aprovechamiento de estos recursos forestales es una actividad que ha pasado por épocas de auge y severas crisis, debido principalmente a la pérdida del mercado por sustituirlos por materiales sintéticos y la disminución de las poblaciones silvestres por la sobreexplotación. Aunado a ello, los campesinos poseedores de estos recursos no cuentan con una organización que les permita consolidar empresas rurales sustentables para la producción de estos productos, aunado a un atraso tecnológico, entre otros aspectos (García y Mendoza 1998).

Puebla es uno de los estados que posee una gran diversidad de usos de productos forestales no maderables, que desde épocas prehispánicas se han utilizado con fines culturales y con una gran importancia económica. Estas especies se definen como los bienes de origen biológico diferente a la madera, la leña y el carbón vegetal y los servicios que brindan a los ecosistemas. Los productos forestales no maderables presentan grandes potenciales de aprovechamiento futuro, ya que el formar parte de los ciclos productivos de los pueblos rurales realiza su importancia. Representan una alternativa de mercado para las comunidades rurales de la entidad poblana; tal es el caso de la cera de candelilla, palma de soyate, papel amate, aceite de lináloe, hongos silvestres comestibles, flor de manita, resinas, chicle natural, figuras de madera, el uso de la palma, entre otros más (Cuadro 6.5 y Figura 6.10) (Barton y Merino 2004).

La mayoría de los productos derivados del uso de los recursos forestales no maderables derivan también del conocimiento tradicional de las comunidades rurales; se requiere de estudios específicos sobre el potencial de estos recursos naturales en la entidad poblana que permitan generar proyectos productivos derivados a empresas comunitarias, con el objetivo de mejorar la calidad de vida de sus pobladores y la preservación de los recursos que les ofrecen los ecosistemas; también es necesario realizar investigación sobre el manejo tradicional y la recuperación de poblaciones silvestres, con la combinación de tecnologías propias para las regiones que caracterizan al estado de Puebla, junto con alternativas políticas del gobierno que coadyuven a la conservación de la biodiversidad.
Cuadro 6.5 Lista de algunas especies forestales no maderables utilizadas en el estado de Puebla.

<table>
<thead>
<tr>
<th>Especies forestales no maderables</th>
<th>Nombre científico</th>
<th>Productos derivados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmilla (Palma, Yuca)</td>
<td>Yucca schidigera, macrocarpa, mohavensis</td>
<td>Bebidas, forrajero, industrial, comestible</td>
</tr>
<tr>
<td>Sotol (Sereque)</td>
<td>Dasylirion spp.</td>
<td>Cestería, farmacéutico, bebidas, forrajero, construcción</td>
</tr>
<tr>
<td>Cactáceas</td>
<td>Familia de las: Pereskioideae, Maihuenioideae y Opunioideae</td>
<td>Ornamental, comestible, forrajero, industrial</td>
</tr>
<tr>
<td>Jojoba</td>
<td>Simmondsia chinensis</td>
<td>Cera líquida, lubricante de maquinaria, comestible, ecológico, forrajero, peletería, medicinal</td>
</tr>
<tr>
<td>Gobernadora</td>
<td>Larrea tridentata</td>
<td>Medicinal, industrial, alimenticia, insecticida, saponífera</td>
</tr>
<tr>
<td>Damiana</td>
<td>Turnera diffusa</td>
<td>Bebidas, medicinal</td>
</tr>
<tr>
<td>Cortadillo</td>
<td>Nolina espinifera</td>
<td>Artesanal, industrial</td>
</tr>
<tr>
<td>Nopal</td>
<td>Opuntia spp.</td>
<td>Medicinal, comestible, forraje, industrial, cerco, substráete</td>
</tr>
</tbody>
</table>

Fuente: SEMARNAT 2005
http://www.conabio.gob.mx/conocimiento/info_especies/arboles/doctos/70-zygop2m.pdf

Figura 6.10 Uso de la palma para construcción (Foto: Concepción López).
También es importante resaltar que el uso y aprovechamiento de los productos no maderables forestales implica la colecta de partes y derivados de los árboles que conforman los bosques, por lo que su aprovechamiento no implica la muerte de ningún individuo; este tipo de actividad tiene beneficios en los ecosistemas al remover partes y derivados, permitiendo una mayor producción de frutos o ramificaciones, enfocados desde un plan de manejo sustentable.

Autorizaciones en el aprovechamiento forestal sustentable
José Luis Huerta Vázquez

El aprovechamiento del recurso forestal maderable, constituye una fuente de desarrollo muy importante para las comunidades, ejidos, dueños y/o poseedores de los mismos; de él derivan bienes y servicios tanto para la comunidad local como en lo colectivo; así, los beneficios como la generación de empleos y el alcance a los programas de apoyos gubernamentales contribuyen a mejorar la calidad de vida de los habitantes rurales; no obstante, este desarrollo no puede desprenderse del concepto de sustentabilidad y gracias a que el bosque es un recurso renovable, su aprovechamiento, cultivo, conservación, protección y fomento constituyen el eje vertebral del desarrollo forestal sustentable.

Actualmente, el estado cuenta con una superficie bajo manejo forestal de 84 050 ha, con un volumen maderable autorizado de 3 684 424 m³, distribuidos en 10 anualidades, lo que en promedio arroja una producción anual de 368 000 m³. Esta producción deriva de un total de 1 233 autorizaciones de aprovechamiento forestal maderable, emitidas a la fecha por la Delegación Federal de la SEMARNAT en el estado de Puebla (Huerta com. pers.).

Por lo anterior es evidente la derrama económica que la actividad forestal representa en las comunidades rurales del estado, pues de ello deriva también la importante función que se desempeña el sector industrial forestal, agregando valor a esa materia prima (Cuadro 6.6).

Respecto a la producción forestal no maderable, se tienen 21 avisos y permisos de aprovechamiento, de los que la extracción de musgo y heno sólo se realiza en la temporada navideña; estos avisos tienen una vigencia de un año.

El aprovechamiento de palma se está realizando principalmente en la zona de la Mixteca, en donde la vigencia de este tipo de permisos es de cinco años (Huerta com. pers.).

Cuadro 6.6 Cifras de producción maderable en el estado

<table>
<thead>
<tr>
<th>Región</th>
<th>Número</th>
<th>Superficie (ha)</th>
<th>Volumen (m³ RTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholula</td>
<td>25</td>
<td>11 111.660</td>
<td>504 645.145</td>
</tr>
<tr>
<td>Cd. Serdán</td>
<td>90</td>
<td>9 649.947</td>
<td>319 941.731</td>
</tr>
<tr>
<td>Huachinango</td>
<td>66</td>
<td>2 994.044</td>
<td>92 614.045</td>
</tr>
<tr>
<td>Izúcar de Matamoros</td>
<td>8</td>
<td>9 775.848</td>
<td>32 799.074</td>
</tr>
<tr>
<td>Tehuacán</td>
<td>28</td>
<td>9 314.152</td>
<td>169 530.238</td>
</tr>
<tr>
<td>Teziutlán</td>
<td>299</td>
<td>8 752.386</td>
<td>607 136.815</td>
</tr>
<tr>
<td>Zacatlán</td>
<td>717</td>
<td>32 452.073</td>
<td>1 957 756.998</td>
</tr>
<tr>
<td>Total</td>
<td>1 233</td>
<td>84 050.111</td>
<td>3 684 424.046</td>
</tr>
</tbody>
</table>

Fuente: SEMARNAT 2009
La tierra de monte se extrae principalmente de terrenos forestales y específicamente de las actividades de construcción y mantenimiento de brechas cortafuego, ya que al llevarlas a cabo se genera la producción de este tipo de tierra, al tener que dejar una franja con el suelo mineral expuesto para evitar la propagación del fuego en caso de incendio (Huerta com. pers.).

El aprovechamiento de yuca se da en la región Libres-Serdán, cuyo propósito es principalmente la industrialización y extracción de sustancias (Huerta com. pers.).

Este tipo de aprovechamiento en el estado es prácticamente de subsistencia, la derrama económica que genera es mínima en comparación con el aprovechamiento maderable, sin embargo, permite la generación de empleos y la derrama económica en los sectores más necesitados (Cuadro 6.7).

USOS DE FLORA SILVESTRE

Yadira Bock Sánchez, Berenice Ramírez Vera, Ma. Concepción López Téllez y Oscar A. Villarreal Espino Barros

Los estudios sobre la composición florística en el estado de Puebla se han concentrado en algunas regiones, faltando muchas más por estudiar; estos trabajos se basan en la descripción de la composición botánica y la clasificación de las especies en función de los usos locales; dentro de los usos más importantes se dispone de plantas alimenticias y condimenticias, estimulantes, forrajeras, aromáticas, craticolas, textiles, galófitas, gumíferas, oleaginosas, tanantes y curtientes, xilógena de ornato, etc. Otros trabajos describen el origen “mexicano” (náhuatl) de los nombres vulgares de plantas con uso del Sureste del estado (Rivera y Miranda 1942).

Trabajos recientes se fundamentan en la elaboración de guías para la identificación de las especies de árboles, dando información sobre la descripción, ecología, distribución y su uso en la región en diferentes tipos de vegetación (Guizar y Sánchez 1991, Barajas y León 1989). De igual manera se detalla el uso excepcional de algunas especies con diferentes usos; tal es el caso de especies como *Brahea dulcis* (palma), *Quercus spp.* (encinos), *Pinus spp.* (pinos), *Juniperus flaccida* (sabinos) y *Lysiloma* spp. En otros trabajos, además de la descripción de los usos de la vegetación, se describe la importancia de la comercialización no sustentable de plantas de uso medicinal, provocando la pérdida de la diversidad, siendo un reflejo del manejo inadecuado que tienen los pobladores de cualquier comunidad sobre las especies vegetales, debido al bajo nivel económico, así como a la falta de capacitación (Paredes-Flores et al. 2007, Dorado et al. 2007, Guzmán et al. 2007).
Dentro de los principales usos que se tienen de la flora silvestre del estado de Puebla se encuentran las siguientes: medicinal 3 %, alimento 29 %, fabricación de vino 5 %, colorante 1 %, esencia 4 %, cultivos/hortalizas 14 %, granos/cereales y semillas 13 %, jarabes 6 %, frutos 14 %, artesanal 6 %, artículos de belleza 3 %, extracción de aceite 1 % y ornamental 1 % (Figura 6.11) (SDR 2007, Paredes-Flores et al. 2007).

Las plantas con un mayor aprovechamiento son las que tienen fruto, con 29 %, ya que son utilizadas para su cultivo y comercialización con el fin de satisfacer las necesidades de los consumidores para la elaboración de conservas, vinos u otros productos; los productos derivados de los frutos dependerá de los usos y la actividad que caracteriza a cada región, así como la distribución de la fruta; ejemplo de ello es la ciruela roja, amarilla (Spondias spp.), el chicozapote (Manilkara zapota), la anona o chirimoya (Annona cherimola), el tejocote (Crataegus pubescens), entre otras (SDR 2007, Paredes-Flores et al. 2007).

Las que tienen un menor aprovechamiento son las hierbas aromáticas, con el 9 %, ya que sólo son utilizadas como complemento del alimento para dar sabor a la comida; es el caso del epazote (Chenopodium ambrosioides), el pápalo (Porophyllum ruderola), la pipicha (Porophyllum tagetoides), los berros (Nasturtium officinale), la chaya (Cnidoscolus chayamansa) y la chia (Salvia hispanica) (SDR 2007).

Las plantas que se están utilizando para hortalizas y cultivos se encuentran con un 20 % ya que de ellas se obtienen también los granos y las semillas; entre ellos encontramos al amaranoto (Amaranthus hipochondriacus), el ayocote (Phaseolus spp.), la cañabaca (Cucurbita spp.), la caña de azúcar (Saccharum officinarum), el jalapeño (Capsicum annuum), el frijol (Phaseolus vulgaris), la granada (Punica granatum) y el jitalote (Solanus lycopersicum) (SDR 2007, Paredes-Flores et al. 2007).

También se aprovecha a las plantas silvestres que están representadas con el 42 % (Figura 6.12), ya que presentan al menos dos usos diferentes; es el caso del maguey pulquero (Agave spp.), el colorín

Figura 6.11 Usos de la flora silvestre en el estado de Puebla
(Eritrina spp.), el estropajo (Luffa cylindrica), guaje colorado (Leucaena esculenta), cazahuate (Ipomoea spp.), lináloe (Bursera linanoe), palo de Brasil (Hae-matoxylon brasiletto), biznaga (Echinocactus spp.), entre otras (SDR 2007, Paredes-Flores et al. 2007).

USOS TRADICIONALES DE LA FAUNA SILVESTRE

Berenice Ramírez Vera, Ma. Concepción López Téllez, Gonzalo Yanes Gómez y Luis Enrique Romero Martínez

En nuestro país, los recursos naturales representan para las comunidades rurales como: pueblos, ejidos, ranche-rías y zonas indígenas, una fuente alterna de recursos para su subsistencia, pues de ellos obtienen proteínas y otros productos como pieles, grasa, etc. (Retana 2006).

En ese sentido, las comunidades rurales, indígenas y campesinas pueden operar como aliadas de la protección de los recursos naturales y de la biodiversidad, y ser fundamentales para preservar los agroecosistemas tradicionales y la diversidad genética in situ, como lo han demostrado algunas experiencias exitosas en México (Carabias et al. 1994, Toledo 1994, Bocco et al. 2000). El manejo adecuado dependerá de la contribución que grupos de académicos, organizaciones no-gubernamentales y los propios cuerpos técnicos de las comunidades rurales, incorporen el conocimiento de cada sector a las actividades productivas de las comunidades, con el fin de conciliar la conservación y el uso de los recursos naturales y la biodiversidad presente (Figura 6.13).

Se ha reportado por diversos autores y dependencias gubernamentales (SDR 2007, Valera et al. 2008, Gómez et al. 2008, Ramírez et al. 2009), que el mayor uso que se tiene de la fauna es para el grupo de las aves, representada por el 37 %, con 25 especies, de las que el 26 % son dispersoras de semillas, el 22 % son para uso artesanal, ya que se elaboran cuadros con las plumas, vestuarios para danzas prehispánicas y aretes entre otros, y el 19 % como alimento; entre ellas se encuentran la codorniz (Philiortyx fasciatus, Colinus virginianus) y el guajolote silvestre (Meleagris gallopavo) (SDR 2007, Villarreal 2008) (Figura 6.14).

En el estado de Puebla se registraron 21 mamífe-rros, representando el 31 % del total de las especies de fauna utilizadas, que sobresalen por la importancia
Figura 6.13 Fauna silvestre que presenta mayor uso.

Figura 6.14 Especies de aves que presentan mayor uso.
de su presencia en el lugar y el uso que se les da; entre las especies más importantes se encuentra el venado cola blanca (*Odocoileus virginianus*), el coyote (*Canis latrans*), el tejón (*Taxidea taxus*), el jabalí (*Tayasu tajacu*), el conejo zacatón, el conejo real (*Sylvilagus* spp.), la liebre (*Lepus calotis*) y el armadillo (*Dasypus novemcinctus*) (Figura 6.15) (Valera-Herrera et al. 2008, Gómez et al. 2008, Aguilar et al. 2009, Ramírez et al. 2009).

En cuanto a anfibios y reptiles, se utilizan seis especies que corresponden al 10 % del total de la herpetofauna. El organismo que presenta mayor uso es la víbora de cascabel (*Crotalus* spp.), representando el 33 % de los usos de las seis en su totalidad. Los usos asignados son el medicinal, como alimento, controlador de plagas, uso de piel para fabricación de zapatos, carteras y otros (Figura 6.16) (Ramírez et al. 2009, Valera-Herrera et al. 2008, Gómez et al. 2008).

Uno de los usos más importantes para la fauna silvestre es la cacería cinegética; los que tienen mayor aprovechamiento son los mamíferos, representando el 50 %; entre éstos destacan el venado cola blanca (*Odocoileus virginianus mexicanus*), el jabalí...
(Tayasu tajacu) y el tejón (Taxidea taxus); las aves están representadas por el 42 %; las que presentan mayor aprovechamiento son la paloma de ala blanca (Zenaida asiatica), la barranquera (Leptotila verreauxi), la codorniz (Philortyx fasciatus, Colinus virginianus), la paloma huijota (Zenaida macroura) y el pato (para el caso de anfibios y reptiles la única especie que está siendo aprovechada es la iguana negra que corresponde el 8 % (SDR 2007, Villarreal 2008).

De los invertebrados se utilizan 11 especies que se caracterizan por presentar un valor alto en cuanto a calidad nutricional, y se consideran como platillos exóticos, como es el caso de los escamoles, los jumiles, las cuetlas y los chapulines. La abeja y la avispa negra son las más utilizadas con el 15 %, como polinizadores, además del uso de su miel y como alimento (panal con larva) (Figura 6.17) (SDR 2007).
Unidades de manejo y aprovechamiento de la vida silvestre
Ma. Concepción López Téllez y Miguel Martínez Fernández

En el año 1997 el gobierno federal estableció una estrategia denominada Sistema de Unidades de Manejo para la Conservación de la Vida Silvestre (UMA), con la intención de contribuir a conciliar y a reforzar mutuamente la conservación de la biodiversidad, así como la mejor planeación en la administración de los recursos naturales, tanto de flora como fauna silvestre, que se encuentren en algún estatus de conservación en la NOM-059-SEMARNAT-2001, y al mismo tiempo, generar incentivos o nuevas oportunidades que cubran las necesidades de producción y desarrollo socioeconómico de México en el sector rural. Los sitios incorporados en esta estrategia, conocidos como Unidades de Manejo para la Conservación de la Vida Silvestre (UMA), se desempeñan como centros de pies de corte, bancos de germoplasma, alternativas de conservación y reproducción de especies en riesgo, actividades de educación ambiental, investigación, con fines cinegéticos y como unidades de producción de ejemplares, porciones y derivados que pueden ser parte de los distintos recintos del mercado legal para su comercialización (López et al. 2007).

Existen dos tipos de UMA: a) las de producción intensiva, en las que se promueve la reproducción de especies bajo condiciones de confinamiento y b) las de producción extensiva, que operan con la aplicación de técnicas de conservación y manejo de hábitat de las poblaciones en vida libre (Figura 6.18) (López et al. 2007).

En México, están registradas a la fecha 7 861 Unidades de Manejo, que ocupan una superficie de 22 millones de hectáreas que representan el 12 % de la superficie total del país. Del total de UMAs, 5 469 corresponden a parques cinegéticos o ranchos, con un 69 % del total de unidades registradas; el 19.95 % pertenece a unidades de manejo intensivas (1 569) y el resto a las clasificadas en viveros, circos y zoológicos, entre otros (López et al. 2007).

Para Puebla se tienen registradas un total de 207 Unidades de Manejo que en conjunto representan una superficie de 109 807 ha; de ellas, 127 se encuentran registradas bajo la modalidad de intensivas, con una superficie de 14 055 ha, mientras que los predios registrados como UMAs extensivas dan un total de 80 y son los que reflejan la mayor parte de la superficie bajo manejo, con un total de 95 752 ha (López et al. 2007).
Del total de unidades de manejo extensivo, 72 se dedican al aprovechamiento extractivo mediante la cacería cinegética, de las que 35 han realizado esta actividad de manera sustentable, otorgando entre las temporadas 2005-2006 y 2008-2009 un total de 500 cintillos para el aprovechamiento extractivo vía caza deportiva. Una gran proporción de las UMA extensivas del estado se localizan en la región de la Mixteca y se han creado por la presencia de la especie emblemática de la zona, como es el venado cola blanca mexicano (*Odocoileus virginianus mexicanus*) (Villarreal y Guevara 2002, Villarreal 2008).

En la actualidad, se ha realizado un diagnóstico de la situación de las UMA establecidas en la Mixteca Poblana, a través de un grupo de trabajo que incluye a la Escuela de Biología de la BUAP, Altepetl A. C., la Fundación Produce del Estado de Puebla y la Asociación Regional de Silvicultores de la Mixteca, cuyo objetivo es establecer las líneas estratégicas para el fortalecimiento y desarrollo integral de las UMA y los productores de la región (López et al. 2007).

Del análisis se concluye que existen beneficios directos para los productores de la región, así como la conservación y el manejo adecuado de los recursos naturales. Se ha generado información precisa en relación a la distribución y abundancia de las especies de importancia cinegética que caracterizan a la región, como lo es el venado cola blanca, el escorpión y la iguana negra, entre otras especies. Esto ha permitido que se realice manejo del hábitat dentro de las UMA para incrementar las poblaciones silvestres, registrándose la presencia de especies que ya se habían extinto o extirpado localmente, como son el puma y el jabalí (López et al. 2009).

El establecimiento de las UMAs también ha servido como un instrumento de organización de las actividades productivas y de conservación de la vida silvestre, al permitir la planeación y zonificación dentro de los predios para el manejo sustentable, porque ha permitido consolidar y formar comités como el de vigilancia, los de UMAs y los de difusión, entre otros; es un esquema alternativo de manejo responsable de la vida silvestre.

Aunado a esto, el sistema de UMAs ha incorporado áreas boscosas al manejo y conservación de la vida silvestre, considerándose en consecuencia como un sistema versátil en el cual pueden participar y operar los productores para favorecer la acción libre y conjunta que permita incrementar la calidad de vida de los pobladores de la región.

Ganadería diversificada en la región mixteca

Oscar A. Villarreal Espino Barros, Jorge Ezequiel Hernández Hernández, Francisco Javier Franco Guerra, Julio Cesar Camacho Ronquillo y Salvador Romero Castaño

La Mixteca Poblana es una región étnica pobre y marginada del desarrollo, ubicada al sur del estado de Puebla; está conformada por 47 municipios del centro sureste de la entidad (SEDESOL 1999). La producción agropecuaria es la principal actividad económica de la zona; basada en la agricultura de temporal y la ganadería extensiva, su agostadero cerril se dedica a la ganadería extensiva de bovinos para carne y caprinos, aprovechando la vegetación natural (Villarreal et al. 2008).

En la región se distribuye *in situ* el venado cola blanca (*Odocoileus virginianus*), de la subespecie *mexicanus*, en más de 550 000 ha (Villarreal y Guevara 2002). Este cérvido y otras especies de fauna silvestre pueden ser aprovechados en forma sustentable mediante el modelo tecnológico agrosilvopastoril denominado "Ganadería Diversificada". Por lo tanto, la Mixteca Poblana es una zona tradicionalmente venadera, donde grupos de cazadores locales y de los estados circunvecinos cazan cada año en forma legal, la subspecie *O. virginianus mexicanus*, aportando beneficios ambientales y económicos a las comunidades de la región (Villarreal 2006).

La "Ganadería Diversificada" es una tecnología desarrollada por la ANGADI (Asociación Nacional de Ganaderos Diversificados Criadores de Fauna), en la Planicie Nororiental de México (ANGADI 2004). Ese modelo tecnológico fue transferido al estado de Puebla con la finalidad de conservar los recursos naturales e incrementar las tasas de ingreso y empleo regional (Villarreal 2006). El modelo es un sistema agrosilvopastoril que busca la diversificación productiva, combinando la explotación extensiva de bovinos para carne con el aprovechamiento racional y sostenido del venado cola blanca, otras especies
CAPÍTULO 6 • USOS DE LA BIODIVERSIDAD EN EL ESTADO DE PUEBLA

Figura 6.19 Ejemplo de la ganadería diversificada en la Mixteca Poblana (Foto: Concepción López).

de la fauna silvestre y el hábitat, en la caza deportiva y el turismo de naturaleza. Esta tecnología ha demostrado su factibilidad por medio del establecimiento de Unidades de Manejo para la Conservación de la Vida Silvestre o UMA (Figura 6.19) (ANGADI 2004; Villarreal 2006).

Esta alternativa de aprovechamiento de los recursos naturales y de la ganadería ha generado beneficios ambientales y socioeconómicos, representado en una buena relación entre la capacidad de carga del hábitat en unidades animales (UA), que es entre 7.28 y 9.41 ha/UA y las densidades poblacionales de fauna silvestre (Villarreal et al. 2008 a). Además, de la determinación de 139 especies vegetales identificadas como consumidas por el venado, se ha producido una optimización en el empleo de suplementos alimenticios y agua en épocas críticas (Villarreal y Marín 2005). El consumo de plantas herbáceas y arbóreo-arbustivas en la dieta constituye una ventaja para el sistema de reservas corporales del venado en el estiaje (Villarreal et al. 2008). Otro aspecto no cuantificado es el relativo a los servicios ambientales por la captura de carbono y el reciclaje de nitrógeno en el suelo.

Estos modelos agrosilvopastoriles diversificados, integrados y autosuficientes (DIA), son una alternativa para la conservación de los recursos naturales, ya que favorecen el reciclaje de nutrientes, la producción de biomasa y su movimiento a través del ecosistema, logrando establecer esquemas que integran el manejo productivo, con el intercambio de energía y nutrientes y con una base natural de funcionamiento coherente.

Las UMAS, a través del modelo de Ganadería Diversificada, pueden ofrecer también la posibilidad de aprovechar en forma racional y sostenida otros animales con potencial cinegético, como es el caso de varias especies de palomas, codornices y pequeños mamíferos, la observación de aves, de plantas y animales endémicos y/o en peligro de extinción, la pesca deportiva y el turismo de aventura.

DIVERSIDAD CULTURAL Y APROPIACION INDÍGENA DE LA NATURALEZA

David Jiménez Ramos

La historia de uso de las comunidades indígenas y campesinas como actores sociales en México es muy antigua, lo que ha moldeado una compleja interacción entre la naturaleza y las culturas de los pueblos nativos de México, en espacios que han sido construidos en un proceso histórico de larga duración, de carácter multiétnico. A la anterior particularidad hay que agregar el hecho que entre el 80 y 85 % de los bosques y selvas se encuentran bajo algún régimen de propiedad social, ya sean ejidos o bienes comunales, que involucran derechos integrales y colectivos (CONANP 2007).

Actualmente se reconocen 62 pueblos indígenas, con sus culturas locales e historia que definen una
peculiar relación de carácter simbólico y material con la naturaleza circundante. Los territorios en donde habitan son considerados actualmente en situación de fragilidad social y ambiental, provocada por la interacción con culturas con cosmovisiones distintas.

Paradójicamente, en estos espacios manejados por indígenas frente a la gran riqueza biológica presente, también se tienen los más altos grados de marginación social (CONAPO 2002). Aunado a lo anterior, los territorios indígenas son el escenario donde se confrontan racionalidades opuestas: por una parte, la naturaleza se explota bajo criterios estrictamente de intercambio monetario-mercantiles y, por la otra, se reconoce la cosmovisión, vida cotidiana y reproducción social de las comunidades campesinas e indígenas. Particularmente en las diferentes regiones de Puebla con marcada presencia étnica (Sierra Norte, Sierra Mixteca, Zona de los Volcanes y Sierra Negra) es posible identificar en los paisajes “las huellas” de la visión predominante: el acelerado proceso de deterioro ambiental (deforestación, tala, cacería, contaminación y ganadería extensiva entre otros), el uso de tecnología para la explotación/destrucción de los recursos naturales (desarrollo urbanos, industriales y turísticos depredadores), la racionalidad económica individual (inmigración, especulación inmobiliaria y despojo de tierras) y la obtención de ganancias en el corto plazo (explotación minera y del agua), además de generar mayor exclusión, desigualdad, marginación y desarticulación social (establecimiento de áreas naturales protegidas y turismo convencional bajo un enfoque conservacionista privado y comercial, entre otros proyectos).

El resultado de tal confrontación es un conjunto de pueblos intervenidos y trastocados simbólico y materialmente. Sin embargo, es precisamente el contexto adverso y de relativa debilidad interna el que los ha conducido a reorganizar internamente la vida cotidiana, las instituciones comunitarias, las relaciones sociales y por supuesto, las economías locales.

Estas adaptaciones, en conjunto, se despliegan bajo estrategias locales propias, tales como la negociación, reorganización, resistencia, movilización, propuestas orgánicas, defensa y lucha, como formas de reapropiación social del territorio. Cabe señalar que, a pesar de las condiciones del actual sistema económico, se presentan iniciativas autogestivas, con medidas concretas de restauración, conservación, acceso, control, uso y aprovechamiento de la diversidad biológica basadas en acuerdos comunitarios, con prácticas diversas entre las que destacan el manejo forestal comunitario, el manejo integral del traspaso, el uso múltiple del paisaje y de la diversidad biológica y las prácticas agroforestales y silvopastoriles, todas guiadas por la construcción de nuevas territorialidades y colectividades, en donde interviene de manera predominante su cosmovisión y memoria colectiva, las tradiciones y prácticas culturales de los Pueblos.

Por ello, el territorio es el espacio reapropiado y valorizado simbólico y materialmente que remite no sólo a ambientes geográficos, sino también interculturales.

En el proceso de apropiación indígena (y reapropiación social) del territorio intervienen un conjunto de factores recuperados por la Memoria Biocultural, que se nutren de la lingüística, del conocimiento práctico y sabidurías representadas en los pueblos tradicionales, indígenas y campesinos (Toledo y Barrera-Bassols 2008), lo que se expresa en prácticas que conllevan la premisa de no dañar los ambientes, ecosistemas y hábitats, en los que la flora y la fauna tienen vital importancia para las propias poblaciones humanas, y porque se abren espacios de comunicación a otras formas de ver el mundo, desde otras culturas. Este proceso pretende recomponer la relación con la naturaleza mediante acciones culturales incluyentes de respeto, reconocimiento, diálogo, tolerancia, defensa y lucha (Figura 6.20).

Como objeto de estudio, nos encontramos ante diferentes procesos sociales autogestivos y autónomos que reivindican la defensa del Territorio, de la Cultura y de los Derechos de los Pueblos Indios, que por la vía de los hechos cumplen y realizan lo anhelado en diversas leyes del ámbito internacional y que cabe destacar; en México algunos de los políticos que gobernaron tienen miedo al vivir y pensar diferente. Por lo que para comprender de manera cabal, sistemática y en su complejidad la apropiación social del territorio, es necesario también un acercamiento y enfoque transdisciplinario que explique de manera científica, crítica e integral, una problemática que “toca” de manera transversal procesos locales definidos por la
resurgencia y posicionamiento de actores marginados a actores políticos en resistencia, pero fragmentados por los proyectos modernizantes.

También se debe considerar la compleja interacción social que se establece para explorar la relación Pueblos Indios y biodiversidad, pero entendiéndola como una conceptualización humana de complejas relaciones que supere los aspectos técnico-científicos para debatir con un discurso que transforme, articule y proponga una nueva configuración entre naturaleza y sociedad, con lo que queda claro que las acciones de conservación biológica no sólo serán un conjunto de técnicas científicas aisladas, sino también expresión de prácticas y relaciones sociales más armónicas, como un proceso de deconstrucción y reinvolución de la cultura, que abonen a la construcción de otro “mundo posible”.

Figura 6.20 Comunidad Indígena de Tochmatzintla, Municipio de Huatlalahuaca en diálogo de tolerancia, respeto, defensa y lucha de su cultura (Foto: David Jiménez).

EL DESARROLLO COMUNITARIO POR MEDIO DEL APROVECHAMIENTO TURÍSTICO DE LA BIODIVERSIDAD

Iván Lira Vaylón

El turismo, como sector productivo de la economía, representa todas aquellas operaciones de producción y comercialización de bienes y servicios que se generan como resultado de la actividad turística (realización de viajes y desplazamientos de carácter turístico), repercutiendo en la producción total nacional, regional o local, mediante la incorporación de valor adicional que incide directamente tanto sobre las economías de las áreas de destino como sobre las economías de las áreas de origen (Palomo 2006).
Generalmente, como se citó en el párrafo anterior, la actividad turística es considerada como una herramienta de gestión para la producción económica, buscando generar con ella ganancias inmediatas desde el punto de vista económico, a costa del uso apropiado de los recursos naturales y culturales que motivan el desplazamiento de personas. El crecimiento dinámico de visitación en un área natural o cultural genera economías de escala y agresiones que, en el corto plazo, desgastan y presionan el propio recurso visitado. La presencia de turistas en áreas en donde la comunidad local no está preparada para interactuar con ellos provoca situaciones de tensión en ambos actores; para los primeros, sentimientos de inseguridad ante la posible actuación de rechazo por parte de los segundos; para éstos, incertidumbre sobre los motivos de nuevas personas en áreas generalmente restringidas al acceso de extraños.

Si bien el visitante no experto en la interpretación del medio natural y cultural local puede apreciar a simple vista las características correspondientes, no podrá “entender” las externalidades que el medio natural ha generado en la comunidad y viceversa. He aquí que el aprovechamiento turístico, no tan solo de la biodiversidad, sino también de la expresión cultural local, debe de gestionarse en forma conjunta para poder comprender la coexistencia de ambos entes.

“Una asociación armónica entre turismo y desarrollo local sostenible pone el acento en los tipos de turismo basados en el respeto al medio ambiente, en la calidad más que en la cantidad, en la sostenibilidad a mediano y largo plazos más que en la explotación de recursos a corto” (Vidal y Márquez 2007), pero también, debe considerar la pertinencia y pertenencia del desarrollo con un enfoque de aceptación comunitaria, es decir, el aprovechamiento turístico de la biodiversidad con un enfoque y búsqueda del beneficio de los habitantes locales (Figura 6.21).

Figura 6.21 Desarrollo de actividad turística por parte de la comunidad de Jolalpan (Foto: Miriam Tejedor).
Deben buscarse los mecanismos para hacer de la conservación un negocio rentable en las comunidades; demostrarse que la preservación puede otorgar más rentas que el explotación irracional oportunista.

Las ventajas del aprovechamiento racional son vastas, a saber:

- La revalorización del patrimonio local, no sólo como herramienta para generar recursos económicos, sino también para preservarlo y permitir disfrutarlo en generaciones futuras.
- La diversificación de las economías locales.
- El aprovechamiento del tiempo de ocio en los habitantes locales, prestando servicios turísticos al visitante.
- El arraigo de los habitantes a la comunidad.
- La disminución de la migración, por la creación de nuevas fuentes de empleo.
- La conservación de la biodiversidad como elemento que atraiga a los visitantes.
- El sincretismo o dualidad cultura-naturaleza, como elemento forjador de la identidad local.

Sin embargo pueden percibirse ciertas desventajas en la gestión comunitaria:

- La falta de educación técnica que permita a las comunidades entender la actividad como un posible negocio.
- El paternalismo gubernamental que permite la falta de compromiso por parte del gestor comunitario al no hacer suyo el desarrollo turístico y estar a expensas del apoyo gubernamental.
- La alta rotación en las autoridades ejidales o comunales que motivan el reinicio de la formación empresarial turística.
- Los usos y costumbres que pueden restringir la presencia de turistas en la comunidad.
- La polarización en materia de conservación del entorno natural, que impide su aprovechamiento turístico.
- La falta de experiencia en la comunidad para manejar sus rentas y cuestiones hacendarias.
- La errónea creencia de querer sustituir sus actividades productivas tradicionales por la prestación de servicios turísticos.
- La toma de decisiones que, al darse en el seno de la mayoría, generalmente cumplen un tiempo largo en desarrollarse.
- La falta de resultados inmediatos deriva en un desencanto, también inmediato ante el nuevo negocio turístico.

- La falta de consideraciones en el cumplimiento de la normatividad federal, estatal y municipal en el aprovechamiento del entorno natural, en una situación que prevalece en la gestión de los proyectos enfocados al turismo natural, además de la omisión en el uso de ecotécnicas que permitan una interacción de la infraestructura, más amigable con el entorno. Al ser el gobierno uno de los principales gestores en el desarrollo de esta actividad en beneficio de las comunidades, debe considerar más y mejores estrategias que permitan permean la información en estas últimas.

Deben buscarse las formas de mitigar los impactos de la actividad, principalmente evitando:

- Los trastornos de los hábitos de reproducción y la depredación de la fauna y flora.
- La introducción de especies no autóctonas, por estar de “moda” en otras regiones.
- La exterminación de especies por caza o comercio de souvenirs.

“Los impactos ambientales del turismo acaban repercutiendo directamente sobre la población. Gran parte de las destinaciones turísticas con un nivel de desarrollo avanzado presentan problemas a la hora de abordar el tratamiento de residuos y la depuración de aguas residuales y en general las consecuencias del desarrollo turístico no planificado” (Miralles y Roselló 2008). He aquí la oportunidad de que en el estado de Puebla a través del Plan de Desarrollo de Turismo de Naturaleza gestado por actores sociales, gubernamentales y privados, se ejecuten acciones que permitan a las generaciones futuras disfrutar de la gran biodiversidad que aun hoy día podemos observar.

LOS RECURSOS NATURALES COMO MATERIA PRIMA DE USO ARTESANAL

Gonzalo Yanes Días, Susana Berenice Silva Juárez
y Ma. Concepción López Téllez

Los ecosistemas de México proveen el 73% de las materias primas vegetales y animales para las actividades artesanales que se practican por los diferentes grupos poblacionales. Además existe una
enorme variedad de técnicas en relación al aprovechamiento, uso y procesamiento de las materias primas, resultado de la alta diversidad étnica y cultural de nuestro país. El valor económico de los ecosistemas se calcula con base en la sumatoria de los valores de usos comerciales, no comerciales y ambientales, entre otros (Linares 1993).

La disminución en la disponibilidad de las materias primas provoca que algunos grupos indígenas o comunidades rurales dejen de practicar y elaborar sus artesanías, o que baje la calidad de sus productos artesanales. Entre las causas de esta disminución se encuentra una mejora siniéctica inadecuada, falta de claridad en la tenencia de la tierra, la sustitución de bosque por cultivos o potreros, debido principalmente a la subvaloración de la tierra, legislación forestal inadecuada, cultivos no aptos y crecimiento poblacional, entre muchos otros factores (Masera et al. 1996).

Así, el agotamiento de los recursos naturales ha generado impactos económicos, sociales, culturales y ambientales sobre las comunidades artesanales y de áreas rurales de las funciones ecosistémicas. No obstante, algunas empresas artesanales consumidoras de materias primas para la elaboración de artesanías constituyen las más importantes y en muchos casos la única alternativa de ingreso para los habitantes rurales, siendo esta actividad, en consecuencia, la base de su economía (Masera et al. 1997).

México es conocido como un país con una importante tradición artesanal, con origen en la cultura prehispánica, sobre todo la relativa a la cerámica y los textiles. A partir de la conquista, las artesanías se ampliaron al mezclarse con la cultura europea, sin que por ello se abandonara su carácter originario.

La cultura tradicional artesanal rural/indígena del sector poblano puede expresarse según los segmentos de los municipios de 1) Puebla y Amozoc, y los encabezados por 2) San Pedro Cholula (San Andrés Cholula, Cuautlancingo y Coronango), 3) Huejotzingo (Juan C. Bonilla y Domingo Arenas) y 4) San Martín Texmelucan (Xoxtlá y Talitanango). En el primer caso lo distintivo es la artesanía de alfarería, talla de piedra o cantera; en el segundo se producen los ladrillos y barro cocido y crudo, además de cestería de raíz de olate; el tercero es similar al anterior añadiéndose la talla de ónice; en el cuarto se distinguen las unidades de talla en madera, alfarería y objetos en miniatura con las hojas de maíz (totomoxtle).

Los artesanos poblanos utilizan diversos materiales tan durables como el hierro, tan delicados y frágiles como la paja, tan notables como las piedras ágatas y las maderas del cedro, y sumamente sencillos como las cáscaras de nuez o el lodo. En casi todo el estado son fabricados objetos de barro; así lo demuestran los cántaros, las vasijas, las ollas, los comales, las figuras para el Día de Muertos y las delicadas y hermosas piezas de mayólica o talavera. Podemos encontrar frágiles y decorativos objetos como jarras y vasos realizados con el arte del vidrio soplado. En el centro y sur de la entidad poblana se transforman las fibras (Yanes 2009).

En San Pablito se diseñan, con papel amate, diversas figuras rituales. Huauquechula y San Salvador trabajan el papel china picado y fabrican caballitos de cartón. En Cuicatlán y Xoxtmoloco, transforman la vainilla en figuras de aromatizando belleza. Hacia el norte y centro de Puebla, manos hábiles tejen y embellecen blusas, huipiles, enredos, fajillas, rebosos, morrales, sarapes, cobijas y materiales de lana y algodón. De la madera de los árboles de lináloe, al sur, se hacen jicaras y trastes. Con maderas más durables y finas se fabrican muebles labrados con incrustaciones de marfil o de nácar (Yanes 2009).

Es importante mencionar también que en Puebla destacan las artesanías en torno a la cerámica, la alfarería, el labrado y torneado de madera y los tejidos. En la primera es notable la fina talavera poblana traída de España y objetos de ónice labrado, la alfarería aplicada a ollas y cazuelas para la comida y las piñatas así como los ladrillos y tejas para construcción de viviendas; son famosos los objetos de damasquinado y forja de hierro y plata para ornamentos de la charería, como espuelas y botonaduras de Amozoc, además de los juegos pirotécnicos de San Pedro Cholula y en Tlaxiaca.

Es importante realizar una valoración y un buen manejo de las materias primas vegetales, animales o de cualquier otro tipo utilizadas en la elaboración de las artesanías poblanas, que pueden ser una herramienta muy eficaz para la conservación y el
uso sostenible de la biodiversidad. Se requiere el desarrollo de proyectos sustentables que permitan a las comunidades artesanas el uso del bosque y de los materiales que derivan de él, para obtener beneficios económicos bajo un manejo adecuado e integrado. Este tipo de factores pueden ser muy útiles para la consolidación de empresas artesanales, que les permitan definir áreas de alto valor económico y social y áreas de aprovechamiento. También pueden ser mecanismos para incentivar la generación de ingresos que promuevan la conservación y aprovechamiento sustentable de los recursos naturales. Por lo tanto, se requiere de la elaboración de diagnósticos muy precisos sobre los productos y servicios que están aprovechando los artesanos; así mismo, la artesanía poblana debe ser apoyada con estudios que permitan incentivar la investigación en las materias primas provenientes de los ecosistemas naturales utilizados en el sector artesanal, con el fin de crear sistemas de fomento al uso sostenible de esos recursos y garantizar que se puedan sostener económica, social y ambientalmente en el futuro (Figura 6.22).

USO BIOTECNOLÓGICO DE LA DIVERSIDAD BACTERIANA

Moisés Graciano Carcano-Montiel y Lucía López-Reyes

Durante la última década, los países han llevado a cabo esfuerzos significativos para proteger y valorar su patrimonio biológico, como su riqueza de especies y endemismos. En este contexto, la biotecnología ofrece la oportunidad de convertir la biodiversidad en factor de desarrollo económico y social a través de su valoración, uso sostenible y conservación.

Como ejemplo está el caso de las aplicaciones de la biotecnología a la agricultura que se están extendiendo y se desarrollan sobre una base de conocimientos y plataformas de tecnología. El campo de la biotecnología agrícola ofrece muchas oportunidades de valor agregado, como el uso de el recurso a la ingeniería genética, el desarrollo de biofertilizantes y bioplaguicidas (Redo-Osti *et al.* 2004). La biotecnología agrícola, a través de la utilización de biofertilizantes elaborados con bacterias fijadoras de nitrógeno, bacterias solubilizadoras de fosfatos...
y productoras de sustancias reguladoras del crecimiento vegetal, ha introducido grandes avances en los beneficios obtenidos hacia las plantas (Carcaño-Montiel et al. 2004). El proceso biotecnológico de producción de biofertilizantes se realiza a través de la selección de bacterias del género Azospirillum o bacterias fosfosolubilizadoras; posteriormente son reproducidas en medios de cultivo adicionados de fuentes de carbono, nitrógeno, sales minerales y vitaminas; finalmente se adicionan a un soporte estéril y se mezclan. Las semillas de maíz o de trigo son recubiertas con la aplicación de 350 g del biofertilizante, con 25 kg de maíz y de 1.2 kg por 120 kg de trigo, previa impregnación de las semillas con un adherente.

Entre los efectos benéficos de las bacterias a las plantas se pueden mencionar la fijación de nitrógeno en forma biológica, la solubilización de fosfatos insolubles a asimilables, estimulación del crecimiento del sistema radical y de la parte aérea de las plantas, incrementando la producción de grano, mayor contenido nutrimental, menor uso de fertilizantes químicos y pesticidas, menores pérdidas de cultivo y menores costos. Además de ser un recurso natural renovable, no causa contaminación, mejora los procesos biológicos del suelo favoreciendo su fertilidad e incrementa la eficiencia de los fertilizantes minerales. Los efectos y ventajas de los biofertilizantes elaborados con bacterias fijadoras de nitrógeno del género Azospirillum aisladas en el estado de Puebla han proporcionado resultados favorables en diferentes cultivos, en diversos municipios a través de la marca registrada BIOFERTIBUAP (Carcaño-Montiel et al. 2004). Las bacterias solubilizadoras de fosfatos, aisladas de suelos cultivados de maíz en diversos municipios de Puebla, han dado como resultado la creación de la marca registrada BIOFOSFOBUAP.

De esta forma, el manejo de la biodiversidad microbiana poblana a través de biotecnología ha permitido crear tecnologías amigables ecológicas y económicamente.

CONCLUSIÓN

La biodiversidad contribuye directa e indirectamente al bienestar humano. Sin embargo, al hacer uso de ella, se han transformado los ecosistemas naturales, lo que en muchas ocasiones ha generado más pobreza. Tal es el caso de la agricultura, silvicultura y pesca, y el uso desmedido del agua, entre otros, que han permitido invertir en la industrialización y en el crecimiento económico pero los beneficios no se han distribuido equitativamente entre la población.

Para lograr la conservación y el uso sustentable de la biodiversidad es conveniente adoptar medidas tales como: aumentar la conciencia pública, mejorar la educación, aumentar la coordinación entre sectores responsables de la toma de decisiones sobre el uso de recursos naturales y mejorar la capacidad para evaluar las consecuencias de los cambios en los ecosistemas; además se requiere ofrecer incentivos económicos, tomar en cuenta la biodiversidad en las prácticas empresariales y beneficiar a las comunidades locales con su aprovechamiento adecuado, adoptando medidas y políticas a corto y a largo plazo.

Como estrategias de conservación se requiere de la protección de la calidad del agua para favorecer a la flora y la fauna dulceacuícola; en la agricultura es necesaria la implementación y recuperación de prácticas tradicionales y de la agroforestería, además de fomentar la ganadería diversificada y los sistemas agrosilvopastoriles que disminuyen el impacto sobre el ecosistema.
CAPÍTULO 6 • USOS DE LA BIODIVERSIDAD EN EL ESTADO DE PUEBLA

Notas:

El M. en C. Gerardo Tapia Hervert-Calderón proporcionó información que amplía el tema de uso de especies silvestres para el estado y que se incorpora a continuación:

- Como parte de las líneas de investigación del Jardín Etnobotánico Francisco Peláez R. A. C., en su estudio realizado en la zona de San Andrés Cholula, San Andrés Calpan y Huejotzingo, encontró 43 familias, 150 géneros y 208 especies de plantas útiles.

LITERATURA CITADA

Crecimiento urbano en el municipio de Puebla; se observan procesos de erosión severa, deposición de basura y deshechos de construcción. Foto: Gonzalo Yanes.
INTRODUCCIÓN
Gonzalo Yanes Gómez

El estudio de la biodiversidad ha revelado que las actividades humanas ejercen una marcada influencia en la disminución del número de especies, en el tamaño y la variabilidad genética de las poblaciones silvestres y en la pérdida irreversible de hábitats y ecosistemas. Así, mientras muchas especies disminuyen en abundancia y distribución, otras incrementan su población de forma explosiva hasta constituirse, en algunos casos, en plagas (Peña- Jiménez y Neyra- González 1998).

Esta situación mundial es parte de lo que se ha denominado la crisis de la biodiversidad (Dirzo 1990). La manera más simple de percibirla es mediante la reducción del tamaño de las poblaciones silvestres ocasionada por:

1. Sobreexplotación por parte del hombre, incluyendo actividades legales (como la pesca) e ilegales (como el tráfico de especies amenazadas).
2. Destrucción de hábitats causada por diversas actividades productivas que incluyen principalmente la deforestación.
3. Los efectos negativos de las interacciones con enemigos naturales introducidos o favorecidos por las actividades humanas (como depredadores, patógenos y competidores).
4. La influencia de compuestos químicos y tecnologías utilizados en la fertilización de suelos, fumigación de cultivos y la construcción de grandes obras de ingeniería (contaminación).

Las amenazas que atentan contra la integridad y permanencia de los recursos naturales y la biodiversidad se pueden manifestar a nivel de ecosistemas, especies y genes, por lo que sus efectos pueden ser de amplio espectro e incluso acumulativos.

Dentro de las amenazas a nivel de ecosistema se identifican: el cambio global, el cambio climático, la erosión, la fragmentación del hábitat, la contaminación, la disminución de la riqueza y abundancia de especies y los efectos acumulativos de todas éstas (MEA 2005).

En lo que respecta a las especies, se identifican como amenazas: la introducción, la erradicación y el comercio ilegal e irracional de las mismas (Vitousek et al. 1996).

La introducción de especies exóticas, la pérdida de germoplasma (variabilidad), las especies modificadas (variedades mejoradas), la biotecnología (clonación) y la bioseguridad (riesgo de liberar organismos modificados genéticamente al medio ambiente) son claras amenazas que afectan a la diversidad genética (Peña- Jiménez y Neyra-González 1998).

En este capítulo se presenta la situación de cambios de uso del suelo y vegetación, así como estudios de caso sobre flora y fauna amenazadas por el hombre o por causas naturales y concluye con información respecto de la contaminación de cuerpos de agua en el estado.

CAMBIOS A NIVEL DE ECOSISTEMAS:
CAMBIOS DE USO DE SUELO
Y VEGETACIÓN 1980-2000

Instituto Nacional de Estadística
y Geografía
María Lourdes Guevara Romero

Del año 1980 al 2000, el 70 % del territorio del estado de Puebla no presentó cambio alguno en el uso del suelo, ni en la cobertura vegetal; sólo en el restante 30 %, se observaron transformaciones que
se han englobado en los siguientes conceptos: deterioro o recuperación de la vegetación, incrementos o decrementos de las áreas agrícolas, incrementos o decrementos de los pastizales (tanto cultivados como inducidos), transiciones al interior de las áreas agrícolas y de los pastizales (en este caso se trata de cambios en los distintos tipos de agricultura: riego, temporal o permanente y semipermanente, y de los pastizales cultivados o inducidos), e incrementos de las áreas urbanas. La magnitud de estos conceptos se presenta en la Figura 7.1 y su complemento en el Cuadro 7.1.

Dentro de las clases de cambio, la de mayor magnitud corresponde a la de los deterioros de la vegetación, abarcando un área de 279 mil ha, seguido por el de recuperaciones de la vegetación con 195 mil ha y, en tercer lugar, los cambios al interior de la agricultura con 175 mil ha; en éste, el paso de agricultura de temporal anual a agricultura semipermanente y permanente tuvo un fuerte impacto (Figura 7.2).

En el caso del crecimiento de zonas urbanas, el resultado que arroja este comparativo no tuvo la representatividad adecuada debido a que las áreas urbanas no fueron contempladas en la Carta de uso del suelo y vegetación del Instituto Nacional de Estadística, Geografía e Informática (1980).

Por otra parte, es importante recalcar que el análisis de los impactos a la cobertura vegetal, tanto positivos como negativos, no son robustos, pues en el Inventario Nacional Forestal (SEMARNAT 2001) se agruparon las clases de vegetación primaria arbórea y secundaria, lo que reduce la posibilidad de reconocer de manera más contundente el estado real de los bosques y selvas en el estado.

En la Figura 7.3 y en el Cuadro 7.2 se presenta la distribución de los distintos usos del suelo del territorio del estado y su comparación en tres fechas: 1980, 1993 y 2000, así como una estimación al 2020.

AR Agricultura anual, semipermanente y permanente con riego (incluye riego eventual), TA Agricultura de temporal donde el cultivo anual es
Cuadro 7.1 Permanencias y grandes grupos de cambios de uso del suelo y vegetación 1980-2000

<table>
<thead>
<tr>
<th></th>
<th>Superficie ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanencias</td>
<td>2 396 278</td>
<td>70</td>
</tr>
<tr>
<td>Deterioro vegetación</td>
<td>278 888</td>
<td>8</td>
</tr>
<tr>
<td>Recuperación vegetación</td>
<td>195 521</td>
<td>6</td>
</tr>
<tr>
<td>Cambios agricultura</td>
<td>174 935</td>
<td>5</td>
</tr>
<tr>
<td>Incremento agricultura</td>
<td>112 520</td>
<td>3</td>
</tr>
<tr>
<td>Decreto pastizales</td>
<td>103 793</td>
<td>3</td>
</tr>
<tr>
<td>Incremento pastizales</td>
<td>55 139</td>
<td>2</td>
</tr>
<tr>
<td>Urbanización</td>
<td>49 477</td>
<td>1</td>
</tr>
<tr>
<td>Decreto agricultura</td>
<td>33 408</td>
<td>1</td>
</tr>
<tr>
<td>Transición no posible (ID)</td>
<td>25 665</td>
<td>1</td>
</tr>
<tr>
<td>Cambios pastizales</td>
<td>2 406</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3 428 030</td>
<td>100</td>
</tr>
</tbody>
</table>

dominante (incluye agricultura de humedad), TP Agricultura de temporal donde los cultivos permanentes y/o semipermanentes son dominantes, PC Pastizal cultivado, PZ Pastizal inducido, pradera de alta montaña y pastizal natural, BF Bosques primario y secundario arbóreo de coníferas: oyamel, ayarin, cedro, pino y tásctate; incluye bosques de pino-encino, encino-pino, bosques de galería y plantación forestal, BD Bosque primario y secundario arbóreo de encinos, BM Bosque mesófilo de montaña (primario y secundario), SH Selva alta y mediana perennifolia y subperennifolia, SS Selva baja y mediana caducifolia y subcaducifolia, VM Matorrales crasicaule y desértico rosetófilo en condiciones primarias, VV Popal, tular y vegetación halófila y gipsófila, VS Áreas con vegetación secundaria arbustiva y herbácea de las diversas comunidades boscosas, selváticas y de matorrales en el estado de Puebla, DV Áreas desprovistas de vegetación, ZU Zonas Urbanas, H2O Cuerpos de agua: presas, lagunas.

INSECTOS Y PATÓGENOS QUE AFECTAN A LAS ÁREAS ARBOLADAS DE PUEBLA
David Cibrián Tovar

En 2008, con técnicos de la Secretaría de Medio Ambiente y Recursos Naturales, el autor realizó un diagnóstico sobre la salud que guardan las áreas forestales de las ocho regiones en que se divide el estado de Puebla; en cada región se reconoció a los principales problemas de índole fitosanitario. Cada uno de los organismos de mayor importancia fue analizado en detalle y se propusieron alternativas específicas de manejo (Cibrián et al. 2008). Para este documento se realizó un resumen sólo con aquellas especies que se consideraron de mayor importancia en cada uno de los principales tipos de vegetación.

Bosque de pino
En estas comunidades el principal problema es sin duda el causado por los insectos descortezadores.
Figura 7.2 Cambios de uso de suelo y vegetación 1980-2000
de los géneros *Dendroctonus* e *Ips*, del primero se encuentran *Dendroctonus adjunctus* y *D. mexicanus*, que se califican como plagas primarias capaces de matar árboles sanos. *D. adjunctus* se encuentra en los pinares de grandes altitudes, afectando principalmente a los bosques de *Pinus hartwegii* y *Pinus rudis*.

El descortezador *D. mexicanus* se ubica en los pinares de altitudes medias y sus hospedantes principales son *Pinus leiophylla*, *P. montezuma*, *P. patula* y *P. pseudostrobus*. Las infestaciones de ambos descortezadores modifican el paisaje e inciden en la composición de especies arbóreas, además de afectar económicamente a los dueños de terrenos forestales. Las especies *Ips bonanseai*, *I. integer*, *I. lecontei* el. *calligraphus*, junto con *Neoips mexicanus*, se han considerado secundarias, y lo son en la mayoría de los casos; sin embargo, en condiciones de alto impacto a la salud de los árboles, como daños por incendios o por sequías prolongadas, estos insectos logran causar la muerte de árboles debilitados (Cibrián et al. 1995). En las regiones de Zacatlán-Chignahuapan y Teziutlán, en algunas plantaciones de *Pinus patula* que se establecen en sitios fuera del rango de distribución altitudinal de la especie, se presentan como plaga principal.

En Puebla existen rodales residuales de pino piñonero *P. cembroides* (también llamado *P. cembroides* subsp. *orizabensis*) en terrenos con baja precipitación y suelos someros. En estos árboles la producción de piñón es severamente reducida por un complejo de insectos que reducen la cosecha en más del 50 % y en ocasiones hasta en más del 70 % del total de conos (Cibrián et al. 1986). El barrenador *Conophthorus cembroides* es la principal plaga, pero también la chinche semillera, *Leptoglossus occidentalis* es de importancia; otros insectos como *Eucosma bobana* y las mosquitas *Dasineura* spp. contribuyen en la mortalidad de conos y coníllos.

El impacto generado por este conjunto de insectos afecta seriamente la regeneración de rodales y la producción de semillas comestibles.
Después de los insectos descortezadores de pinos, la segunda plaga forestal en el estado son las plantas parasitas, principalmente muérdagos enanos del género Arceuthobium. Los bosques de pino, especialmente de Pinus hartwegii y P. oaxacana, están infectados. Los rodales afectados se encuentran en todas las regiones aunque con mayor severidad en la Sierra Nevada, la Sierra Negra y la Malinche. Las especies de mayor importancia son Arceuthobium globosum subsp. grandicaule, A. nigrum y A. vaginatum subsp. Vaginatum.

En la Sierra Negra también existen infecciones por plantas parasitas del género Cladocolea, consideradas de medias a severas y obligan al manejo mediante podas y aclareos (Hernández 1994).
Encinares
En los encinares del estado, los muérdatos verdaderos del género *Phoradendron* están ampliamente distribuidos y comprenden siete especies: *P. falcatum*, *P. falcifer*, *P. galeottii*, *P. lanceolatum*, *P. longifolium*, *P. purpusii* y *P. velutinum* (Cibrían et al. 2007). Algunas son de gran importancia para las encinas y otros árboles que acompañan, especialmente *P. velutinum*, que además afecta varios frutales de valor económico importante.

Bosque mesófilo de montaña
En el bosque mesófilo, en donde existe *Liquidambar macrophylla*, se encuentra el muérdato *P. falcifer*, parásito que infecta severamente a las poblaciones de *Liquidambar* y que causa debilitamiento y muerte de ramas. Las infecciones se presentan en árboles residuales que han quedado en los márgenes de potreros o campos de cultivo y son utilizados por las aves para posarse, momento en el que consumen los frutos de estos muérdatos y aprovechan las cubiertas pero la semilla pasa intacta a través del tracto digestivo del ave y sale en las heces del animal, proceso que favorece la germinación y que propicia la dispersión de la plaga.

Desde el punto de vista de la sanidad forestal, las especies arbóreas del bosque mesófilo están poco estudiadas, sin embargo, se conoce de un problema de importancia en el árbol *Ocotea puberula*, llamado popularmente resbaloso o zopilote; la madera de este árbol tiene fuerte demanda entre los carpinteros y es buscada continuamente, aunque las poblaciones de esta especie son cada vez más escasas. Los viveristas de la región de Xicotepec de Juárez buscan producir el árbol, sin embargo, uno de los insectos denominados brocas consume más del 90 % de los frutos y con ello hace casi imposible disponer de semilla sana. El insecto responsable de la pérdida de semilla se llama *Pagioceerus frontalis* que pertenece al grupo de barrenadores tipo broca del café; además de afectar a los frutos de este valioso árbol también ataca los frutos de aguacate y los granos de maíz almacenado (Wood 1982).

Zonas áridas
En las zonas áridas de la Mixteca Poblana existen especies de alto valor y destaca el tetecho (*Neobuxbaumia tetetzo*), común en la región de Tehuacán; en esta cactácea columnar se tienen infestaciones por insectos barrenadores, tanto coleópteros cerambicidos como lepidópteros.

Las infestaciones por este conjunto de especies son evidentes en varias áreas, tanto en áreas naturales protegidas como en terrenos privados. Los tetechos infestados muestran deformaciones en el tallo y gradualmente pierden vigor; en las lesiones provocadas por los insectos se encuentran bacterias que aceleran la muerte de la planta. Este conjunto de insectos y patógenos se detecta como una amenaza a la biodiversidad de estas regiones, sin embargo, se requieren estudios adicionales que permitan disponer de información para una mejor toma de decisiones.

Sierra Norte
En la parte tropical del norte de Puebla se tienen poblaciones naturales de cedro rojo *Cedrela odorata*, especie famosa por su madera de alta calidad; en este árbol se tienen infestaciones severas por el barrenador *Hypsipyla grandella*. En varias regiones, desde Xicotepec de Juárez hasta Ayotoxco, se han establecido plantaciones para enriquecer cafetales, cultivos agrícolas o potreros abandonados, en muchas de ellas se tienen infestaciones tan severas que los productores las abandonan para cambiar a otras opciones; sin embargo, otros productores logran plantaciones con infestaciones tolerables. Este barrenador puede ser manipulado al seleccionar cuidadosamente los terrenos a plantar, al identificar y utilizar semillas de árboles tolerantes y a aumentar la diversidad de especies arbóreas en los terrenos a reforestar; tal es el caso al plantar especies nativas no hospedantes como especies de *Tabebuia* o Ocotea.

IDENTIFICACIÓN DE AMENAZAS A LOS OBJETOS DE CONSERVACIÓN EN LA RESERVA DE LA BIOSFERA TEHUACÁN-CUICATLÁN
José Carlos Pizaña Soto y Cecilia Leticia Hernández Hernández

Los objetos de conservación son aquellas entidades, características o valores que se quieren conservar en un área como especies, ecosistemas u otros...
aspectos importantes que en conjunto representan la biodiversidad del área (Granizo et al. 2006). Las Areas Naturales Protegidas en la República Mexicana están inmersas en una complejidad de tipo socio-político-ambiental debido a que los centros de población ejercen una fuerte presión sobre los recursos naturales; las comunidades van ocupando y transformando grandes áreas de su territorio para su subsistencia. En la Reserva de la Biosfera Tehuacán-Cuicatlán hay una situación no es diferente. El Valle de Tehuacán ha tenido asentamientos humanos desde el 7 000 a.C.; con la domesticación del maíz pasaron de ser cazadores recolectores a agricultores (Zea mays L.), influyendo en el desarrollo de las culturas y civilizaciones de Mesoamérica. Entre ellos, los grupos étnicos de los mixtécas, mazatecos, chinantecos, nahua, chocholtecos, pololocas, cuicatecos e ixcatédocs se desarrollaron dentro del valle, tal como se corrobora con las investigaciones antropológicas realizadas por MacNeish (1972).

Para conocer la problemática ambiental de la Reserva de la Biosfera Tehuacán-Cuicatlán se realizaron 13 talleres participativos de diagnóstico ambiental y social (talleres de “Expertos” y talleres regionales).

A través de ellos se identificaron las actividades antrópicas (presiones) que se desarrollan en la Reserva de la Biosfera y que por sus características ocasionan impactos a los sistemas u objetos de conservación. De igual forma se identificaron los impactos más relevantes ocasionados por las presiones, siendo calificadas por su ubicación, extensión, intensidad y temporalidad (Cuadro 7.3).

Bosques de Cactáceas Columnares

Las amenazas principales del bosque de cactáceas columnares son las siguientes:

a) La conversión a agricultura incompatible con la conservación, b) las prácticas ganaderas, c) el crecimiento urbano, e) la generación de desechos sólidos, f) el desarrollo de infraestructura vial y g) plagas (descortezadores, parásitos y fitoparásitos).

Matorral Xerófilo

Este objeto presenta muy alta presión con ocho amenazas principales:

a) Conversión a agricultura, b) ganadería, c) el saqueo de especies, d) las prácticas forestales e) el desarrollo de infraestructura, f) la generación de desechos sólidos, g) el uso del fuego, h) la explotación o exploración minera (extracción de materiales pétreos) i) las plagas (descortezadores, parásitos y fitoparásitos).

Comunidades Ribereñas

Este objeto de conservación presenta niveles altos de presión, como los siguientes:

a) Prácticas pesqueras incompatibles con la conservación, b) contaminación puntual c) la extracción de materiales de construcción como grava, piedra y arena y d) establecimiento de represas o de estructuras de captación de agua que ocasionan la presencia de especies invasoras (exóticas y/o nativas); estas son obras que producen problemas por el alto costo y por su vida útil limitada debido a la gran cantidad de azolve que lleva el agua, que inutiliza en pocos años la enorme inversión realizada. En conjunto ocasionan la alteración de la composición biológica, así como la alteración de la calidad de agua que pone en riesgo la permanencia de las especies que se distribuyen actualmente.

Selva Baja Caducifolia

Este objeto de conservación con niveles altos de presión cuenta con ocho amenazas activas en el sitio:

a) La conversión a agricultura, b) las actividades ganaderas incompatibles con la conservación, c) el saqueo de especies, d) los desechos sólidos (orgánicos e inorgánicos), e) la presencia y modernización de infraestructura vial, f) los incendios provocados, g) las prácticas de caza o recolección y h) la explotación o exploración minera.

Bosque de Coníferas y Latifoliadas

El objeto de conservación tiene niveles muy altos de presión, con siete amenazas activas en el sitio, cuatro son una fuente de presión muy alta y tres de nivel alta y son las siguientes:

a) La conversión a agricultura, b) el desarrollo y modernización de infraestructura vial, c) los incendios
Cuadro 7.3 Actividades antrópicas e impactos ambientales causados sobre los objetos de conservación en la Reserva de la Biosfera Tehuacán-Cuicatlán.

<table>
<thead>
<tr>
<th>Actividades antrópicas</th>
<th>Impactos ambientales ocasionados</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conversión a agricultura, ganadería o silvicultura</td>
<td>1. Destrucción o pérdida del hábitat</td>
</tr>
<tr>
<td>2. Prácticas ganaderas incompatibles con la conservación</td>
<td>2. Composición biológica alterada</td>
</tr>
<tr>
<td>3. Crecimiento urbano</td>
<td>3. Alteración de la calidad del suelo</td>
</tr>
<tr>
<td>5. Desechos sólidos (orgánicos e inorgánicos)</td>
<td>5. Destrucción directa de un sistema</td>
</tr>
<tr>
<td>6. Desarrollo de infraestructura vial</td>
<td>6. Régimen (micro) climático alterado</td>
</tr>
<tr>
<td>7. Prácticas de caza o recolección incompatibles con la conservación</td>
<td>7. Régimen hidrológico alterado</td>
</tr>
<tr>
<td>8. Incendios provocados por humanos</td>
<td>8. Niveles alterados de parasitismo</td>
</tr>
<tr>
<td>9. Explotación o exploración minera incompatible (extracción de materiales pétreos)</td>
<td>9. Alteración de la calidad del agua</td>
</tr>
<tr>
<td>10. Prácticas pesqueras incompatibles con la conservación</td>
<td>10. Mortalidad excesiva</td>
</tr>
<tr>
<td>11. Contaminación puntual</td>
<td>11. Cambios de disponibilidad de alimentos</td>
</tr>
<tr>
<td>12. Represas o captaciones de agua</td>
<td>12. Reproducción alterada</td>
</tr>
<tr>
<td>13. Introducción de Especies invasoras (exóticas y/o nativas)</td>
<td>13. Régimen de fuego alterado</td>
</tr>
<tr>
<td>14. Plagas (descortezadores, parásitos, fitoparásitos)</td>
<td></td>
</tr>
<tr>
<td>15. Desarrollo de infraestructura para servicios públicos</td>
<td></td>
</tr>
<tr>
<td>16. Uso turístico y recreativo in compatible con la conservación</td>
<td></td>
</tr>
<tr>
<td>17. Extracción excesiva de productos forestales no maderables</td>
<td></td>
</tr>
<tr>
<td>18. Prácticas forestales incompatibles con la conservación</td>
<td></td>
</tr>
<tr>
<td>19. Contaminación difusa</td>
<td></td>
</tr>
<tr>
<td>20. Modificación de ciclos biogeoquímicos</td>
<td></td>
</tr>
<tr>
<td>21. Cadenas tróficas</td>
<td></td>
</tr>
</tbody>
</table>

Refugios

Las presiones que se presentan para este objeto de conservación son las siguientes: a) saqueos, b) desechos sólidos (orgánicos e inorgánicos), c) contaminación difusa (no puntual), d) especies invasoras (exóticas y/o nativas), e) prácticas pesqueras incompatibles con la conservación y f) usos turísticos y recreativos incompatibles con la conservación.

Palmares

Este tipo de objeto es difícil de evaluar pues se considera que es consecuencia de disturbios sobre otros...

Cuadro 7.4 Principales amenazas que tienen los objetos de conservación.

<table>
<thead>
<tr>
<th>Amenazas / objetos de conservación</th>
<th>BCC</th>
<th>BMM</th>
<th>MX</th>
<th>CR</th>
<th>SBC</th>
<th>BCL</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultura incompatible</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Práctica ganadera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crecimiento urbano</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desechos sólidos</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagas</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caza</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Práctica pesquera</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saqueo de especies</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso de fuego</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prácticas forestales</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explotación minera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso turístico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminación difusa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establecimiento de represas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

BBC Bosque de Cactáceas columnares, **BMM** Bosque Mesófilo de Montaña, **MX** Matorral Xerófilo, **CR** Comunidad Ribereña, **SBC** Selva Baja Caducifolia, **BBL** Bosque de Coniferas y Latifoliadas, **R** Refugios, **P** Palmares.

tipos o asociaciones vegetales, como los encinares, que se han visto sometidos a cambios de uso del suelo o a incendios forestales; sin embargo, existen asociaciones vegetales donde dominan de manera natural las comunidades de palmas (ver amenazas a los objetos de conservación en el Cuadro 7.4).

TRANSGÉNICOS EN PUEBLA, PELIGRO PARA LA BIODIVERSIDAD EN LA CUNA DEL MAÍZ

Ricardo Pérez Avilés

“La contaminación de nuestro maíz tradicional agrede la autonomía fundamental de nuestras comunidades indígenas y agrícolas porque no estamos meramente hablando de nuestra fuente de alimentos; el maíz es parte vital de nuestra herencia cultural.”

Aldo González (Ruiz-Marrero 2004)

La Ley de Bioseguridad de Organismos Genéticamente Modificados, publicada en 2005, establecía que el maíz estaría sujeto a un régimen de protección especial. Hasta marzo de 2009 seguía siendo ilegal la liberación de estas semillas en campo para fines experimentales o comerciales pero el gobierno federal publicó el 6 de marzo las reformas a esta Ley, que permiten el uso experimental de maíz transgénico.

La prohibición se justificaba porque México es el centro de origen del maíz y el riesgo de que el maíz transgénico desplace algunas de las variedades más antiguas se consideraba alto. La idea era conservar
la biodiversidad del maíz (Figura 7.4), que por miles de años ha sido la base de la cultura mexicana, porque su importancia no es sólo económica sino social.

No obstante lo anterior, Quist y Chapela (2001) de la Universidad de California, Berkeley, afirmaron haber descubierto ADN biotecnológico entre las decenas de variedades nativas de maíz que estudiaban en Oaxaca y Puebla, México, pues identificaron fragmentos del material genético de Bacillus thuringiensis, (bacteria del suelo usada por Monsanto para crear maíz Bt resistente a los insectos) en las muestras analizadas.

Según José Sarukhán, presidente del Grupo Asesor en materia de maíz transgénico de la Comisión de Cooperación Ambiental “La razón por la que entra tanto maíz transgénico a México es que los productores estadounidenses se niegan a separar el maíz transgénico del no transgénico y los funcionarios de agricultura mexicanos han tenido que aceptar esta situación para poder satisfacer la demanda de este grano en el país” (CCA 2003).

En el 2007, el Instituto Nacional de Ecología detectó evidencias de contaminación de maíz transgénico en las hojas de la milpa, de acuerdo a un estudio nacional denominado “Monitoreo de cultivos de maíz genéticamente modificados” (De los Angeles 2009), aplicado en los estados del país para reducir el uso de este producto en los cultivos mexicanos, nocivos para el consumo humano. Los monitoreos en Puebla detectaron evidencias de semillas transgénicas en cultivos de los municipios de Ajalpan, Altepexi, Zinacatepec, Tehuacán, Coxcatlán (probable cuna del maíz), Zoquitlán, Zapotitlán Salinas y Tlacotepec de Porfirio Díaz.

El maíz transgénico amenaza la biodiversidad de maíz en Puebla, entidad que se ufana, como se acaba de indicar, de ser la probable cuna del maíz, en uno de los municipios hoy contaminados: Coxcatlán. La liberación del maíz transgénico afecta a las variedades mexicanas y concretamente a las pueblanas, conforme las advertencias que se hacen (aunque de manera contradictoria) en el estudio Maíz y biodiversidad: efectos del maíz transgénico en México (CCA 2004), trabajo en el que se plantea que el flujo de genes entre razas de maíz criollo y también entre variedades tradicionales y modernas tiene lugar; que el flujo genético entre maíz y teocintle ocurre, además de que el flujo de genes es importante en el dinámico proceso por el que los recursos genéticos del maíz se manejan...
en las milpas (in situ) en México. Los campesinos mexicanos a menudo intercambian semillas; siembran mezclas de semillas de distintas fuentes, incluidas ocasionalmente variedades híbridas modernas, y con frecuencia permiten y procuran la polinización cruzada entre diferentes variedades cuando se cultivan en cercanía. A pesar del flujo génico, los campesinos tienen la capacidad de seleccionar y perpetuar diversas variedades criollas y cultivares. Los transgenes se han introducido en algunas variedades tradicionales de maíz en México y están ya presentes en el maíz mexicano y se propagarán. Por eso, al igual que otros alelos de variedades modernas, se incorporarán en las variedades locales.

Otras preocupaciones que provocan los transgénicos se refieren a la formación de un monopolio por parte de las grandes empresas semilleras, que haga que se pierda la tradición de guardar y de mezclar las semillas, debido a que las variedades modificadas son estériles, lo que hace que los agricultores necesariamente vuelvan a comprar el año siguiente más semilla. Al respecto se puede abundar que desde hace tiempo, una sola empresa (Monsanto) es la que maneja el 91% del comercio de semillas transgénicas (Clive 2001) con lo que la preocupación se ha convertido en un hecho contundente. La empresa no sólo vende las semillas sino también todo el kit que incluye agroquímicos y otras sustancias. Los principales beneficiarias de este desarrollo (los OGM) han sido hasta ahora las grandes compañías transnacionales de la agroindustria (López 2004).

No obstante las advertencias sobre posibles daños a la biodiversidad, la salud de los consumidores y la pérdida de soberanía alimentaria a manos de las grandes transnacionales (como Monsanto, porque ahora ella es la dueña del maíz, tal y como se puede encontrar en su página (http://www.monsanto.com.mx/semillas.htm), en la que sus diferentes divisiones ofrecen variedades de semillas y agroquímicos), las leyes se han modificado poniendo en grave peligro el patrimonio que representa la biodiversidad de maíz en Puebla, su importancia social y la relevancia cultural que significa este cultivo que incluso es factor de identidad nacional.

Los campesinos y la comunidad científica comprometida con la conservación del maíz autóctono han propuesto algunas medidas que debe tomar la comunidad nacional para proteger los centros de origen y domesticación de la biodiversidad, como Puebla. Entre estas se encuentran las siguientes:

A corto plazo, impedir la autorización de las siembras experimentales de OGM.

A mediano plazo, impulsar un modelo de agricultura sustentable con proyectos agroecológicos, social, económica y ambientalmente justos, con sistemas de producción que protejan la salud de los recursos del planeta y de sus ecosistemas, así como a las personas y los seres vivos que dependen de ellos.

A largo plazo, incidir en la implementación de políticas de reducción del uso de fertilizantes, en favor de productos que colaboren con la disminución de emisiones de GEI y mantener y fortalecer la actual moratoria a la siembra comercial de Maíz Transgénico en nuestro país, así como reducir y monitorear las importaciones de maíz transgénico.

AMENAZAS A LOS ANFIBIOS EN EL ESTADO DE PUEBLA: DOS ESTUDIOS DE CASO

Ricardo Luría Manzano, Luis Canseco Márquez, Guadalupe Gutiérrez Mayén y Héctor R. Elfoa León

Aunque la disminución de las poblaciones de anfibios es un fenómeno que ha venido ocurriendo desde la década de los cincuenta (Houlahan et al. 2000), fue hasta el primer Congreso Mundial de Herpetología realizado en 1989 cuando los especialistas concluyeron que se trataba de un fenómeno global altamente preocupante (Lips et al. 2005a). Numerosas causas se han propuesto para explicar esta crisis de la biodiversidad, dentro de las cuales destacan la destrucción y fragmentación del hábitat, la contaminación química de cuerpos de agua, la introducción de especies exóticas, el incremento en la radiación ultravioleta (UV-B), el cambio climático (alteración de los patrones de precipitación y temperatura), las enfermedades (quiritidomicosis, saprolegniasis, ranavirus), así como los efectos sinérgicos causados por dos o más de estos factores (Young et al. 2001).

Recientemente, Stuart et al. (2004) documentaron que el 43 % de los anfibios experimenta un decremento en sus poblaciones, el 32.5 % está globalmente...
amenazado y 122 especies se han extinguido en los últimos 25 años. A pesar de que no existen estudios que documenten las consecuencias de pérdidas de biodiversidad de tal magnitud, se prevé que resulten gravemente afectadas redes tróficas tanto acuáticas como terrestres, debido al ciclo de vida bifásico de la mayor parte de estos vertebrados (Lips et al. 2005b); además, debido a que, mientras en etapa larval se alimentan de algas y como adultos son principalmente insectívoros, se esperan repercusiones directas en poblaciones tanto animales como vegetales.

México alberga la cuarta anfibiofauna más rica del planeta (Mittermeier y Goettsch 1992), siendo el 61 % endémica al territorio nacional (Flores-Villela y Navarro 1993), por lo que es alarmante que sea el segundo país con más especies amenazadas de este grupo (191). En el estado de Puebla se tienen registradas 82 especies de anfibios (véase Gutiérrez-Mayén et al. en capítulo IV), que representa el 43 % del total nacional por lo que es importante evaluar el estado de sus población y buscar la forma de protegerlas.

Destrucción del hábitat de *Incilius cristatus* en la Sierra Norte

El caso del sapo de crestas grandes (*Incilius cristatus*, Figura 7.5 A-C), llama particularmente la atención, pues es endémico a México y está considerado en la lista roja de especies en peligro crítico (CR), lo que significa que enfrenta un riesgo muy alto de extinción, siendo su probabilidad de desaparición mayor al 50 % durante los próximos 10 años.

Históricamente se tienen registros de esta especie en las localidades de Xalapa, Veracruz y Teziutlán, Puebla. Sin embargo, en la actualidad sólo se tiene documentada su presencia en la primera localidad y en la Sierra Norte de Puebla. En colecciones científicas apenas se cuenta con algunos ejemplares y en su hábitat natural se han encontrado muy pocos individuos. Esta especie era ya considerada extinta, sin embargo Mendelson y Canseco-Márquez (1998) lo redescubrieron para el estado. Recientes muestreos realizados por Canseco-Márquez y Gutiérrez-Mayén (2006) ponen de manifiesto que las poblaciones están representadas por pocos individuos adultos en el municipio de Cuetzalan, estado de Puebla. Así mismo, los esfuerzos realizados por localizarlo en Teziutlán han sido infructuosos, por lo que es posible que la especie haya desaparecido de este sitio debido fundamentalmente a la destrucción del hábitat por el crecimiento urbano, además de la contaminación de los cuerpos de agua lóticos donde se reproduce. Tanto Pineda y Halffter (2004), como Canseco-Márquez y Gutiérrez-Mayén (2006) lo encontraron únicamente en áreas con vegetación conservada (bosques mesófilos de montaña y bosques de pino-encino con alto grado de humedad). Esta información sugiere que esta especie es muy susceptible a los cambios en el uso del suelo, por lo que su área de distribución se ha reducido por la destrucción y fragmentación de su hábitat (Figura 7.5 D).

Quitridiomisis en *Plectrohyla arborescandens* en la Sierra Negra

Otra amenaza importante para las poblaciones de anfibios es la quitridiomisis, enfermedad infecciosa emergente causada por el hongo *Batrachochytrium dendrobatidis*, que ha sido diagnosticada como la causa de muerte de numerosos individuos de diferentes especies en varias regiones del planeta, lo
que ha contribuido significativamente a la rápida disminución de las poblaciones (Berger et al. 1998, Lips 1999). El hongo ha sido detectado en regiones montañosas remotas con vegetación prístina, donde incide de manera grave en las especies de anuros de hábitos ribereños (Berger et al. 1999, Lips 1999). En México los ecosistemas montanos (que abarcan las zonas ecológicas templada húmeda y subhúmeda) ocupan el 20.8 % del territorio nacional (Neyra-González y Durand-Smith 1998), albergando una gran diversidad biológica y un gran número de endemismos. Dado que *B. dendrobatidis* fue recientemente encontrado a elevaciones altas en el país (Lips et al. 2004), es muy probable que esté amenazando la existencia de los anfibios mexicanos.

Durante un muestreo realizado en junio de 1996 en la Sierra Negra al sureste del estado de Puebla, se recolectaron renacuajos pertenecientes a *Plectrohyla arborescandens*, algunos de los cuales carecían de las mandíbulas e hileras de dientes característicos de la especie. En ese entonces no se tenía conocimiento del hongo y mucho menos existía información sobre sus efectos en los individuos, por lo que no se investigó más acerca de estas anomalías. Actualmente se sabe que *B. dendrobatidis* infecta las partes queratinizadas de los anfibios, que en renacuajos se restringen al disco oral ocasionando anomalías en su estructura, como la pérdida parcial o total de mandíbulas e hileras de dientes y la hinchazón y el enrojecimiento de las papilas labiales (Fellers et al. 2001).

Recientemente, en junio del 2008, se observó a machos adultos de *P. arborescandens* así como parejas en amplexo (abrazo nupcial en anuros) (Figura 7.6 A, B), y se recolectaron renacuajos en un arroyo perteneciente al municipio de Santa María Coyomeapan, localizado en la Sierra Negra Poblana, en un bosque de encino-pino. En estos últimos se observó la pérdida de hileras de dientes y mandíbulas del disco oral (Figura 7.6 C), por lo que se les aplicó la técnica de preparaciones húmedas en fresco para determinar la presencia del hongo (Frias-Alvarey et al. 2008). Desafortunadamente, las muestras resultaron positivas a la presencia de *B. dendrobatidis* en esta población, ya que se pudieron observar esporangios con esporas del hongo en muestras de mandíbulas vistas al microscopio óptico (Figura 7.6 D). Este hallazgo es preocupante, dado que *P. arborescandens* es endémica a México y se encuentra bajo protección especial en la NOM-059-SEMARNAT-2001 (DOF 2002), además de que en Puebla, el hongo únicamente había sido encontrado al este (Frias-Alvarey et al. 2008), en un área lejana a la Sierra Negra.

SITUACIÓN ACTUAL DE LOS AMBYSTMÁTIDOS (AMPHIBIA: CAUDATA) DE LA CUENCA ORIENTAL DEL ESTADO DE PUEBLA

Carlos Castañeda Hernández, Guadalupe Gutiérrez Mayén y Constantino Villar Salazar

Durante las dos últimas décadas se han registrado mundialmente severas declinaciones y extinciones de poblaciones y especies de anfibios (Barinaga 1990, Tyler 1991, Young et al. 2001, Ron et al. 2003) debido a múltiples factores, en su mayoría causados por el hombre, entre los que destacan la
destrucción del hábitat (Flores-Villela y Gerez 1994, Ochoa-Ochoa y Flores-Villela 2006), la introducción de especies exóticas (Knapp y Matthews 2000), la radiación ultravioleta (Anzalone et al. 1998, Broomhall et al. 2000, Calfee et al. 2006), la contaminación de cuerpos de agua (Heralecky 1990) y la infección por el hongo Batrachochytrium dendrobatidis (Diaz et al. 2007).

Dentro de los anfibios, el grupo de los urodelos o caudados comprende a las salamandras y ajolotes. En México se encuentran 128 especies de urodelos (Flores-Villela y Canseco-Márquez 2004) de las que 20 habitan en Puebla (véase Gutiérrez-Mayén et al. capítulo IV), destacando la familia Ambystomatidae por ser una de las más representativas del país debido a que incluye a los llamados ajolotes, con un total de 17 especies presentes en el país (Liner 2007), de las que 16 (94.11 %) son endémicas a México. 15 especies habitan en la Faja Volcánica Transmexicana y sólo tres de éstas (Ambystoma taylori, A. velasci y A. leorae) se encuentran en el estado de Puebla (Flores-Villela y Canseco-Márquez 2007). A. taylori es endémico a la laguna de Alchichica (Figura 7.7) y A. velasci habita en las lagunas cráter Quechulac (Figura 7.8), Las Minas (Figura 7.9), Atexcac y Tecuitlapa dentro de la Cuenca Oriental (Percino 2008), así como en la laguna de Ajolotla en el municipio de Chignahuapan en la Sierra Norte del estado y A. leorae habita en los arroyos que se encuentran en los límites del estado de Puebla con el estado de México, en las cercanías de Río Frio (Rafaélli 2007).

Los Ambystomátidos que se encuentran en el estado de Puebla merecen especial atención por dos razones: la primera es porque se encuentran bajo alguna categoría de riesgo de acuerdo a la NOM-059-SEMARNAT-2001 (DOF 2002) y en la lista roja de la IUCN (International Union for Conservation of Nature and Natural Resources) (2008) (Cuadro 7.5); la segunda porque enfrentan graves problemas de conservación debido a la modificación y el mal uso de su hábitat, la extracción para consumo y la introducción de especies exóticas (Heralecky 1990). A continuación se describen las amenazas que están afectando a las poblaciones de Ambystomátidos que habitan en las lagunas de la Cuenca Oriental. La información presentada proviene tanto de literatura como de observaciones realizadas por los autores como parte del inventario herpetofaunístico llevado a cabo durante los dos últimos años en algunos de los municipios donde habitan estas especies.
Situación de los ambystomas en las lagunas cráter de la cuenca oriental

En los lagos cráter de la Cuenca Oriental (Xalapascos) existen varios factores que afectan las poblaciones de Ambystomáti dos, los más importantes son:

a) La introducción de especies exóticas. En algunas lagunas de la Cuenca Oriental se han introducido especies de peces como la mojarra (Tilapia sp.) y la trucha (Salmo gairdneri) que han tenido gran impacto en las lagunas de Quechulac, Las Minas y Aljojuca, y especies de ornato como la carpa (Carassius sp.) en la laguna de Tecuitlapa (Alcocer et al.).
Cuadro 7.5 Categoría en la que se encuentran los Ambystomas según la NOM-059-SEMARNAT-2001 y la lista roja de la IUCN

<table>
<thead>
<tr>
<th>Especie</th>
<th>Categoría</th>
<th>Distribución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambystoma leorae</td>
<td>-</td>
<td>Cr</td>
</tr>
<tr>
<td>Ambystoma taylori</td>
<td>Pr</td>
<td>Cr</td>
</tr>
<tr>
<td>Ambystoma velasci</td>
<td>Pr</td>
<td>Es N</td>
</tr>
</tbody>
</table>

Cr estatus crítico, Pr protección especial, E endémica a México, N no endémica.

2004, Percino 2008). Esta es una de las razones por la que en las lagunas de Quechulac y Las Minas los ajolotes son cada vez más raros debido a que la trucha y la mojarra depredan a los huevos, crías y jóvenes, mientras que la carpa, al ser una especie que se alimenta de los microorganismos que se encuentran en el fondo, eleva los desechos nitrogenados presentes en el agua que afectan a los ajolotes. En una visita realizada en marzo de 2007 se observó en la orilla de la laguna de Las Minas aproximadamente 10 ajolotes adultos muertos que habían sido capturados con anzuelo por las personas que van a pescar mojarras y truchas.

En el caso de la laguna de Aljojuca, Heralecky (1990) menciona haber entrevistado a la población cercana a la laguna y no haber obtenido ningún registro de A. velasci; recientemente, Percino (2008) menciona que a pesar del esfuerzo de captura no logró obtener registros de la especie, por lo cual probablemente ha sido extirpada.

b) La extracción para consumo y medicina tradicional. Esta es una amenaza que enfrentan los ajolotes no sólo de las lagunas cráter sino también los que se encuentran en las lagunas de Totolcingo (El Carmen) y El Salado (Tepeyahualco), debido a que, históricamente, los ajolotes han sido una fuente gastronómica de los pobladores de estas zonas, por lo que una parte de los organismos extraídos son consumidos localmente y el resto es transportado y comercializado en algunos mercados (Hidalgo, Cinco de Mayo, entre otros) de la ciudad de Puebla, donde son preparados en tamales, empanadas y caldos, ya que se tiene la creencia de que son medicinales porque curan afecciones respiratorias, razón por la que, además, son utilizados como medicina alternativa a través de la elaboración de jarabes y ungüentos (Figura 7.10). Tanto la gastronomía como la medicina tradicional demandan básicamente individuos adultos en edad reproductiva, lo que afecta la tasa de reemplazo poblacional y causa la declinación de la población.

c) La alteración y/o destrucción del hábitat. Recientemente se ha dado la destrucción del hábitat entre los municipios de Oriental y Tepeyahualco de Hidalgo,
debido a la desecación y relleno de los canales en los que habitan los ajolotes, para la construcción del complejo comercial “La Célula” (Figura 7.11), ocasionando que tanto las larvas como los adultos de A. velasci que se encuentran en las zonas cercanas a la laguna El Salado (Tepeyehualco) se vean afectados; los primeros, al desaparecer los cuerpos de agua donde se desarrollan y los segundos, al no contar con sitios dónde refugiarse en época de secas, cuando disminuye de manera natural el nivel de la laguna.

Las lagunas cráter de la Cuenca Oriental también han sufrido alteraciones que se ven reflejadas en la disminución de casi un metro en el nivel del agua observada en los últimos años, provocando situaciones como en la Laguna de Tecuitlapa, donde la desecación en los últimos años ha causado la fragmentación de la laguna en pozas más pequeñas (Alcocer et al. 2004), reduciéndose el hábitat de los ajolotes.

Esta situación podría agravarse en los próximos años poniendo en riesgo la existencia de los ajolotes y de las lagunas mismas, si se considera la posibilidad de bombar el agua de la Cuenca Oriental hacia las ciudades de México y Puebla para abastecer sus necesidades, a pesar de ser área de veda para la explotación del agua subterránea desde agosto de 1954 (Alcocer et al. 2004).

d) Otros factores. Recientemente Frias-Álvarez et al. (2008) registraron la presencia del hongo Batrachochytrium dendrobatidis en la población de A. velasci que habita en la laguna de Quechulac. Este hongo causa la enfermedad llamada quitridiomicosis, considerada actualmente como una de las principales causas de la declinación de numerosas poblaciones de anfibios a nivel mundial (Berger et al. 2004).

Lamentablemente, es crítica la situación actual de las poblaciones de A. velasci que se encuentran en las lagunas cráter de la Cuenca Oriental así como en lagunas cercanas a pesar de que se encuentra bajo protección especial (Pr) en la NOM-059-SEMARNAT-2001 (DOF 2002) y como estable en la IUCN; de igual manera A. taylori enfrenta graves problemas de conservación debido a la extracción por pesca rudimentaria y a la contaminación que ha tenido la laguna de Alchichica de donde es endémica, por lo que se considera vulnerable y prioritaria en la lista roja de la IUCN a nivel mundial (Camarillo-Rangel 1998) y en categoría a protección especial (Pr), dentro de la NOM-059-SEMARNAT-2001 (DOF 2002). Sin embargo, estas medidas son insuficientes, por lo que se requieren acciones que impidan la contaminación y la desecación de las lagunas, la erradicación de
AMENAZA A LA BIODIVERSIDAD MICROBIANA POR PRESENCIA DE HIDROCARBUROS EN EL SUELO

Armando Tapia Hernández, Lucía López Reyes,
Moises Carcano Montiel, García Torres A,
Castañeda A. D., Vázquez Chávez L. A., Teresita Jiménez Salgado

El uso indiscriminado de fertilizantes químicos y pesticidas, y los derrames de compuestos xenobióticos, como los hidrocarburos, repercuten en las propiedades físicoquímicas y biológicas del suelo. Es particularmente importante la alteración que pueden sufrir las poblaciones microbianas debido a su significativa participación en todos los procesos de transformación.

La contaminación de suelos y aguas con petróleo y sus derivados es uno de los problemas más comunes y de mayor preocupación en México y en el mundo. Los hidrocarburos derramados son transportados por gravedad a través de los horizontes del suelo y pueden llegar alcanzar mantos freáticos. Los hidrocarburos residuales son atrapados en poros y actúan como una fuente continua de contaminantes potencialmente tóxicos.

Debido a la complejidad y especificidad que presenta cada suelo contaminado en su estructura, características físicoquímicas y biológicas, así como la naturaleza del contaminante, se requiere, por lo general, de procesos de tratamiento específicos para su remediación. La biorremediación es un proceso que involucra microorganismos o procesos biológicos para transformar y/o eliminar contaminantes del ambiente. En este sentido, la biodegradación se define como el cambio en la estructura química de un compuesto, catalizado biológicamente (Madsen 1991).

El biomonitoro es una técnica que permite realizar el seguimiento de diversas poblaciones microbianas en muestras ambientales. Permite conocer y estudiar la estructura, composición y dinámica de las diferentes poblaciones microbianas presentes en procesos de biorremediación de suelos contaminados (Torsvik et al. 1994).

El estado de Puebla es atravesado por ductos que llevan petróleo y sus derivados a los centros de refinación o distribución, por lo que existe el riesgo de derrames de estos productos al suelo y a cuerpos de agua de forma accidental o provocados por el robo de combustibles.

El 17 de enero del 2002 ocurrió un derrame de petróleo crudo en el km 407+640 por la ruptura del oleoducto 30” Nuevo Teapa-Venta del Carpio en Acatzingo Puebla y afectó suelo de uso agrícola que en su mayoría producía hortalizas (Figura 7.12).

Después del derrame se diseñó un experimento que permitiría monitorear las posibles afectaciones en la comunidad microbiana del suelo. De esta forma el área afectada se dividió en cuatro zonas y se decidió en terrenos aledaños tomar muestras que no fueron afectadas por el derrame, a manera de testigos. Para el estudio microbiológico se tomaron muestras compuestas de las cuatro zonas. La determinación de la concentración de Hidrocarburos Totales de Petróleo (HTPs) se realizó en muestras de puntuales.

En las cuatro zonas se observó una disminución de las poblaciones microbianas en función a la concentración de HTPs presentes en el suelo. Los resultados encontrados mostraron diferencias importantes en las poblaciones bacterianas y fúngicas presentes en los suelos no afectados por el derrame del hidrocarburo y los suelos contaminados. Las poblaciones de bacterias mesofílicas aerobias cultivables (Microorganismo capaz de crecer en un intervalo de temperatura de entre 15° y 40° C y utiliza al oxígeno molecular en su respiración) halladas en las muestras de suelo no contaminado variaron de 3.6 x 10^7 a 1.3 x 10^9 unidades formadoras de colonia

las especies de peces introducidos y programas de educación ambiental que disminuyan o, en el mejor de los casos, terminen con la extracción de los ajolotes de las lagunas donde han habitado desde hace miles de años. Estas acciones son urgentes si queremos conservar a estos anfibios que biológica y culturalmente son importantes debido a que poseen características únicas como: la capacidad de regenerar partes del cuerpo, adquirir la madurez sexual conservando características de juveniles (neotenia); además, historicamente han sido emblemáticas de culturas prehispánicas como la mexica, lo que han hecho verdaderas joyas de la biodiversidad mexicana.
por gramo de suelo (UFC/g); estas variaciones se deben a factores edáficos, ambientales y del uso del suelo. En contraste, en todas las muestras de suelo contaminado analizadas se observó una disminución de la población entre uno y tres órdenes de magnitud, encontrando poblaciones que van de 4.8×10^4 a 5.4×10^6 UFC/g.

Las poblaciones de hongos también se vieron afectadas ya que en muestras de suelo no afectado se encontraron poblaciones de 10^4 UFC, mientras que en suelos afectados por el hidrocarburo las poblaciones eran del orden de 10^2.

La presencia de hidrocarburos no sólo origina cambios en el número de bacterias y hongos, sino también altera la diversidad, ya que en este escenario, ciertos grupos microbianos específicos pueden proliferar, como la comunidad microbiana con habilidad para degradar hidrocarburos.

Estudio de caso 7.1

Contaminación de cuerpos superficiales de aguas en Tehuacán, Puebla

María Teresa Zayas Pérez y Mario Picazo Loyo

En el valle de Tehuacán, la principal producción de la industria maquiladora es exclusivamente el pantalón de mezclilla, en tanto que el principal recurso natural es el agua. Su fama como “capital del agua mineral” ha trascendido las fronteras. La que antes se destinaba para hacer refrescos, hoy se utiliza en una enorme proporción por la industria textil para la fabricación de pantalón de mezclilla; como consecuencia, el vital líquido ahora escasea por su sobreexplotación. La contaminación provocada por las maquilas es alarmante, según un buen número de estudios. Hay discrepancia en
las cifras que manejan el número de maquiladoras existentes en la región; de acuerdo con el INEGI, en Puebla hay 189 maquilas; sin embargo, según la Cámara Nacional de la Industria del Vestido (Canaíves), en Tehuacán hay más de 300, y más de 500 según algunos organismos no gubernamentales (Estela-García y Solís-Fuentes 2008).

Actualmente, en Tehuacán hay más de 25 lavanderías (unas doce legales y las demás clandestinas) y la mayoría no tiene plantas de tratamiento. Cada máquina de lavado usa más de un millón y medio de litros de agua por jornada. En una semana, una de estas plantas gasta más de 100 millones de litros, y sus aguas residuales contienen diversos compuestos químicos que se utilizan durante el proceso de lavado, envejecimiento y desgaste artificial de la mezclilla. Por tanto, es necesario y urgente implementar sistemas de pretratamiento a las descargas de usuarios a la red de drenaje, promover el reuso del agua y, sobre todo, establecer programas permanentes para su uso eficiente. Desde los distintos niveles de gobierno, se debe impulsar la investigación sobre la caracterización, diagnósticos, tratamientos, organización de la gestión del recurso y todo lo que esté relacionado con él. Si no se toman las medidas correctivas necesarias, la calidad del líquido en los cuerpos de agua superficiales no se recuperará, por el contrario, continuará su deterioro por el incremento natural que con el paso del tiempo manifiestan las descargas municipales e industriales, transformando las corrientes en un cuerpo de agua sin vida (Jáuregui et al. 2007).

Estudio de caso 7.2
Amenazas a la biodiversidad en sistemas acuáticos: el caso de Valsequillo
Ernesto Mangas-Ramírez

La principal amenaza hacia la biodiversidad es, sin duda, la alteración y desaparición de los distintos ecosistemas, ya sea por deforestación para actividades agrícolas o bien por la contaminación debido a descargas domésticas e industriales que afectan la atmósfera, el suelo y los sistemas acuáticos. Esto conduce a problemas ambientales y sociales cuyos alcances aún no están completamente definidos ni evaluados.

En la zona central del estado fluyen ríos que pertenecen a la cuenca del Alto Balsas y que alimentan al embalse Manuel Ávila Camacho, también llamado Lago de Valsequillo, importante cuerpo de agua, pues se ha convertido en un sitio de descanso para aves migratorias durante sus viajes invernales.

Desgraciadamente, este embalse se ha visto afectado por contaminación, pues en algunos de los ríos y arroyos que lo alimentan se vierten descargas municipales de las diversas poblaciones por donde pasan. Lo anterior ha propiciado que en el lago exista una elevada demanda bioquímica de oxígeno (DBOS) (superior a 30 mgL⁻¹ de oxígeno) y metales pesados.

Otro problema importante en Valsequillo es el relacionado con los niveles de coliformes fecales extraordinariamente altos (24 000 000 de unidades formadoras de colonias mientras que los límites permisibles por la NOM-01-SEMARNAAT para aguas de riego es de 1000 NMP) y de amoníaco, que se presentan en valores que son tóxicos para cualquier especie de pez de importancia comercial. Estas concentraciones se explican si tomamos en cuenta que de las viviendas de las zonas urbanas en Puebla, aproximadamente el 85 %, del drenaje descarga en corrientes de agua naturales o reservorios destinados al uso agrícola. Por ello la contaminación de este sistema es alta (Mangas-Ramírez 2000, Aragón et al. 1997, Leal et al. 1996).
Este sistema se encuentra cubierto por lirio acuático (*Eichhornia crassipes*) en un 62% de la superficie del espejo de agua (Mangas-Ramírez 2000). Desde mediados de los años sesenta, se ha convertido en un problema para la navegación y uso sustentable del sistema, debido a que impide la oxigenación del agua, facilita el desarrollo de microorganismos patógenos así como de insectos nocivos y algunos vectores de enfermedades. Sin embargo, el lirio también es un indicador de contaminación y tiende a disminuir los niveles de estos contaminantes, incluyendo los metales pesados como el plomo, de tal forma que el lago puede estar funcionando como una enorme planta de tratamiento de agua (Mangas-Ramírez 1991, Uribe 2008). A pesar de ello, en el año de 1997, durante un proceso de limpieza del lago, se trituraron de forma mecánica malezas acuáticas dejando los deshechos dentro del lago para su descomposición; este proceso llevó a que las concentraciones de amoníaco se incrementaran de forma considerable hasta alcanzar 40 mg L⁻¹ (0.5 mg L⁻¹ como máximo permisible para uso y consumo humano de acuerdo a la NOM-127-SSA-1994) lo que provocó que las poblaciones de peces desaparecieran al año siguiente (Mangas-Ramírez 2000).

Los problemas de contaminación del lago deben ser resueltos a través proyectos integrales que incluyan reforestación con plantas nativas (debido a que el suelo no permite el crecimiento de otras plantas), el tratamiento real y eficaz de las aguas que llegan a Valsequillo, la aplicación de la ley para las empresas contaminantes, la búsqueda de uso alternativo para el lirio acuático como la formación de artesanías, papel, biofiltros y compostas, así como la implementación dentro del lago de técnicas de restauración ecológica que permitan mejorar la calidad del agua en el lugar.

CONCLUSIÓN

En este capítulo se reconoce una serie de amenazas a la biodiversidad en el estado de Puebla, entre las que se pueden mencionar los cambios de uso de suelo, plagas forestales, tráfico de especies, incendios forestales, deforestación, organismos modificados genéticamente, enfermedades infecciosas, especies exóticas, contaminación de suelos por hidrocarburos, contaminación de cuerpos de agua por materia orgánica, descargas industriales y metales pesados, entre otros. Ante este panorama se proponen una serie de medidas como es el tratamiento de aguas residuales, la restauración ecológica, la biorremediacion y la conservación y aprovechamiento sustentable de los recursos naturales. La situación es compleja, por lo que se requiere la participación de todos los sectores sociales y la voluntad política de todos los niveles de gobierno, así como la colaboración regional e internacional, a fin de modificar el modelo de desarrollo vigente, como una de las principales causas de esta crisis.
LITERATURA CITADA

Buteo jamaicensis (Aguililla Cola Roja), San Juan Raya, Puebla.
Foto: Miguel Ángel Sicilia / Banco de imágenes de CONABIO.
CAPÍTULO 8
PROTECCIÓN Y CONSERVACIÓN DE LA BIODIVERSIDAD DEL ESTADO DE PUEBLA

INTRODUCCIÓN
José Carlos Pizaña Soto

El 7.8% del territorio del estado de Puebla (268 068.6 ha) se halla bajo alguna categoría de protección. Actualmente cuenta con cinco áreas naturales protegidas de nivel federal y diez estatales; estas últimas se encuentran definidas en distintos instrumentos legales, sin embargo sólo en una de ellas se llevan a cabo acciones de manejo; el resto desafortunadamente son “áreas de papel” debido a que no hay presencia ni conocimiento de ellas. En el estado se encuentran sitios bien conservados que están siendo fuertemente presionados por acciones antropogénicas (cambio de uso de suelo, contaminación, saqueo de especies, modernización de infraestructura vial) por lo que es fundamental la creación de corredores biológicos que permitan mantener el flujo genético y de nutrientes para la permanencia de los ecosistemas.

En las áreas naturales protegidas del estado están representados los siguientes ecosistemas: bosques templados (pino, pino-encino, mesófilo de montaña), bosque tropical húmedo (selvas mediana y alta perennifolia), matorral xerófita (rosetófilo y cráscuale), bosque tropical seco (selva baja caducifolia, selva espinosa), pastizales e incluso algunos ecosistemas acuáticos y subacuáticos.

En el estado se han realizado acciones encaminadas a la conservación de suelos, como la reconversión productiva, el manejo de tierras, la agricultura de ladera, el establecimiento de plantaciones forestales y praderas, así como de Unidades de Manejo para la Conservación de la Vida Silvestre (UMA).

Para el caso de la conservación ex situ, Puebla cuenta con un registro completo de las acciones que se llevan a cabo por el gobierno, instituciones académicas y de investigación o por organizaciones de la sociedad civil.

Algunos de los trabajos están vinculados con labores de reforestación orientadas a sitios donde se ha deteriorado o perdido la cobertura vegetal, ya sea por cambios de uso del suelo, tala inmoderada o por incendios forestales. El tema está siendo abordado por los gobiernos estatal y federal, sin embargo, las acciones son limitadas para controlar la pérdida de suelo.

En relación con el ordenamiento territorial (OT) como un instrumento de planeación y conservación, se encuentra limitado a cinco ordenamientos regionales, de los que sólo uno ha sido decretado y publicado en el Periódico Oficial del Estado. Actualmente están en elaboración 12 OT municipales en municipios de muy alta marginación, que permitirán, una vez que sean aprobados y publicados, una mejor toma de decisiones en el uso del territorio, incluyendo sitios que pueden fungir como áreas de protección de la biodiversidad.

En el estado se han realizado actividades encaminadas a buscar la conservación coordinada, como el taller de Conservación por Diseño, efectuado con expertos de diferentes instituciones académicas y gubernamentales de Puebla (COLPOS, BUAP, SMRN, RBTC, Ayuntamiento de Puebla), donde se identificaron 11 sitios que pueden ser considerados (previos estudios de factibilidad) para conformar un sistema estatal de áreas naturales protegidas.
PROTECCIÓN Y CONSERVACIÓN DE LA BIODIVERSIDAD
José Carlos Pizarra Soto, Cecilia Leticia Hernández Hernández

Sin duda alguna el instrumento de la política ambiental con mayor fuerza jurídica para la conservación de la biodiversidad son las Áreas Naturales Protegidas (ANPs). Son porciones terrestres o acuáticas representativas de las distintas regiones biogeográficas del país, en donde las condiciones naturales no han sido esencialmente alteradas por el hombre y que producen beneficios ambientales. Se establecen mediante un decreto presidencial, estatal o acuerdo municipal donde se describen las actividades que pueden llevarse a cabo en base a la Ley General del Equilibrio Ecológico y Protección al Ambiente (LGEEPA, 2007) y la Ley Estatal correspondiente, sus Reglamentos en Materia de Áreas Naturales Protegidas y sus Programas de Manejo.

La protección de estos sitios ha sido social y políticamente impulsada a partir del reconocimiento de su importancia para conservar la biodiversidad, su contribución a la regulación del clima, el aprovisionamiento de agua y otros recursos naturales y como espacios idóneos para la investigación científica, la educación ambiental y el turismo de naturaleza. Los tipos de Áreas Naturales Protegidas encontradas en el estado de Puebla son tres: Parques Nacionales, un Área de Protección de Recursos Naturales, y una Reserva de la Biosfera (Figura 8.1).

Áreas naturales protegidas federales de Puebla

Desde 1935 a la fecha se han decretado cinco ANPs de carácter federal que cubren un área de 253,646.02 ha (7.4 % de la superficie estatal) cuya protección y manejo es responsabilidad de la Comisión Nacional de Áreas Naturales Protegidas (Figura 8.2 y Cuadro 8.1) (CONANP 2008).

Área de Protección de Recursos Naturales Cuenca hidrográfica del río Necaxa

Una de las políticas que desarrolló el Gobierno Federal durante la gestión del Presidente Lázaro Cárdenas, fue asegurar el buen funcionamiento de las industrias que representaban para el país fuentes de trabajo (obras hidráulicas destinadas a la producción de energía eléctrica), motivo por el que el 20 de octubre de 1938 se decretaron como Zona Protectora Forestal Vedada los terrenos que limitan la Cuenca Hidrográfica del río Necaxa. En septiembre del 2002 y con base en la LGEEPA, el Gobierno de la República emitió el decreto de recategorización de esta zona como Área Natural Protegida con el carácter de Área de Protección de Recursos Naturales (DOF 2002) (Cuadro 8.2).

La Cuenca Hidrográfica del río Necaxa tiene una superficie de 42 261.5 ha y se localiza en la porción norte del estado de Puebla (Sierra Norte) y este del estado de Hidalgo, con un total de 13 municipios (3 del estado de Hidalgo y 10 del estado de Puebla) (CONANP 2009) (Figura 8.3).
Figura 8.2 Áreas Protegidas Federales en el estado de Puebla (INEGI, 2009)
Cuadro 8.1 Áreas Naturales Protegidas Federales en el estado de Puebla (CONANP 2009)

<table>
<thead>
<tr>
<th>ANP</th>
<th>Categoría</th>
<th>Superficie (ha)</th>
<th>Superficie aprox. en el estado de Puebla (ha)</th>
<th>Ubicación</th>
<th>Injerencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehuacán-Cuicatlán</td>
<td>Reserva de la Biosfera</td>
<td>490 187</td>
<td>183 499.86</td>
<td>Oaxaca y Puebla</td>
<td>Federal</td>
</tr>
<tr>
<td>Iztacciuatl- Popocatépelt Zoquiapan y anexas</td>
<td>Parque Nacional</td>
<td>40 591</td>
<td>11 121</td>
<td>México, Puebla y Morelos</td>
<td>Federal</td>
</tr>
<tr>
<td>Malinché o Matalachayatl</td>
<td>Parque Nacional</td>
<td>45 711</td>
<td>14 479.32</td>
<td>Tlaxcala y Puebla</td>
<td>Federal</td>
</tr>
<tr>
<td>Pico de Orizaba</td>
<td>Parque Nacional</td>
<td>19 750</td>
<td>12 253.56</td>
<td>Veracruz y Puebla</td>
<td>Federal</td>
</tr>
<tr>
<td>Cuenca Hidrográfica del río Necaxa</td>
<td>Área de Protección de Recursos Naturales</td>
<td>39 557</td>
<td>32 292.28</td>
<td>Hidalgo y Puebla</td>
<td>Federal</td>
</tr>
<tr>
<td>Totales</td>
<td></td>
<td>635 796</td>
<td>253 646.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 8.2 Descripción del área Cuenca Hidrográfica del río Necaxa (CONANP 2009)

<table>
<thead>
<tr>
<th>ANP</th>
<th>Categoría</th>
<th>Fechas de decreto</th>
<th>Superficie aprox. en el estado de Puebla (ha)</th>
<th>Municipios</th>
<th>Tipos de vegetación</th>
</tr>
</thead>
</table>

El área está conformada por amplias zonas de vegetación bien conservada, así como por pastizales, áreas agrícolas, una zona urbana de gran densidad y varias localidades con caseríos dispersos.

En cuanto a fauna silvestre con alguna categoría de riesgo de acuerdo a la NOM-059-SEMARNAT-2001 (DOF 2002) se registran en la zona 5 especies de anfibios, 7 de reptiles, 21 de aves, 6 de mamíferos y 5 de flora (especies en la NOM-059-SEMARNAT-2001 de la Cuenca Hidrográfica del río Necaxa Anexo I) (CONANP 2009).

Algunos de los factores que han impactado de mayor forma la cobertura vegetal y los hábitats del ANPs son el crecimiento de la mancha urbana...
y de infraestructura carretera, aunque cabe señalar que el aprovechamiento y manejo de los recursos forestales, que desde hace muchos años se ha dado en el área, ha permitido la permanencia y regeneración de sus bosques, evitando su degradación y fomentando en la población local la continuidad en las tareas de reforestación. Actualmente se realizan campañas de “Educación Ambiental y Difusión” para la conservación de los recursos naturales. Además se está elaborando una propuesta de modificación al decreto que permita incorporar al manejo y aprovechamiento áreas boscosas abandonadas por la suspensión de autorizaciones y que han sido afectadas por incendios, plagas y enfermedades forestales.

En lo que respecta a la importancia hídrica, la zona ha sido reconocida como sitio Ramsar denominado: “Sistema de represas y corredores biológicos de la cuenca hidrográfica del río Necaxa”.

Parque Nacional “La Malinche”
Cuenta con una superficie de 45 711 ha, de las que 14 479.32 corresponden al estado de Puebla y se ubican en la región Valles Centrales. Los tipos de vegetación y uso del suelo registrados en la zona son: forestal 41.8 % -bosques de encino (Quercus), pino (Pinus) y oyamel (Abies)- pastizal, agricultura y ganadería (58.9 %) (Cuadro 8.3).

El parque tiene un rango altitudinal que va de los 2 400 a los 4 461 msnm (Vargas 2002). Presenta dos tipos de climas: E(T)H frío, con lluvias en verano, temperatura media anual de 2 a 5° C, el mes más frío con temperatura menor a 0 °C. C(w2)(w)(b) ig; semifrío, subhúmedo, con temperatura media anual
Cuadro 8.3 Descripción del Parque Nacional La Malinche (CONANP 2009).

<table>
<thead>
<tr>
<th>ANP</th>
<th>Categoría</th>
<th>Fecha de decreto</th>
<th>Superficie aprox. en el estado de Puebla (ha)</th>
<th>Municipios</th>
<th>Tipos de vegetación</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Malinche</td>
<td>Parque Nacional</td>
<td>6/oc/1938</td>
<td>14 479.32</td>
<td>Puebla, Amozoc, Acajete y Tepatlaxco</td>
<td>bosque de Quercus, bosque de coníferas (Pinus y Abies) zacatal, bosque de Juniperus</td>
</tr>
</tbody>
</table>

Figura 8.4 Parque Nacional La Malinche. (Foto: Omar Cecilio Hernández)

de 5 a 12° C y el mes más frío con temperatura de -3 a 18° C (Vargas 2002) (Figura 8.4).

En esta ANP se han encontrado siete especies de anfibios, 14 de reptiles, 111 de aves y 37 de mamíferos, de las cuales cinco especies de anfibios, cuatro aves, siete reptiles y una de mamíferos están listadas en la NOM-059-SEMARNAT-2001, con alguna categoría de riesgo. En el caso de la flora se cuenta con un registro de 88 musgos, 393 angiospermas y 12 gimnospermas, de las cuales, tres especies se encuentran en la NOM-059-SEMARNAT-2001 (DOF 2002).

La presencia de 32 comunidades humanas dentro de la poligonal del Parque Nacional ejerce una fuerte presión sobre los recursos forestales, lo que ha provocado la fragmentación de la vegetación por cam-
bios de uso del suelo, tala inmoderada e incendios forestales. En contraste, la zona cumple funciones importantes como principal fuente de recarga y aprobación de agua para la ciudad de Puebla, y de corredor biológico entre las montañas más altas de México.

Parque Nacional “Pico de Orizaba”

El Parque Nacional Pico de Orizaba cuenta con una extensión de 19 750 ha, de las cuales 12 253.56 se localizan en el estado de Puebla (Cuadro 8.4). Comprende parte de la región Libres-Serdán, Región hidrológica Golfo centro, Cuenca: Lago Totolcingo C140LT, Subcuenca: Huamantla-San Diego-Tepexmucan. Se localiza entre las coordenadas geográficas 18° 56’ 30” y 19° 09’ 30” norte y entre 97° 12’ 30” y 97° 22’ 30” oeste (Vargas 2002) (Figura 8.5).

El Volcán Pico de Orizaba o Cítlaltépetl es la montaña más alta de México con 5 610 msnm; alberga una alta biodiversidad que comprende 160 especies.

<table>
<thead>
<tr>
<th>ANP</th>
<th>Categoría</th>
<th>Fecha de decreto</th>
<th>Superficie aprox. en el estado de Puebla (ha)</th>
<th>Municipios</th>
<th>Ecosistemas</th>
</tr>
</thead>
</table>

Figura 8.5 Parque Nacional Pico de Orizaba (Foto: Stacey Weller)
Cuadro 8.5 Descripción del Parque Iztapopó (CONANP 2009).

<table>
<thead>
<tr>
<th>ANP</th>
<th>Categoría</th>
<th>Fecha de decreto</th>
<th>Superficie aprox. en el estado de Puebla (ha)</th>
<th>Municipios</th>
<th>Tipos de vegetación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popocatepetl</td>
<td></td>
<td></td>
<td></td>
<td>Tochimilco, Atlaxco, Tianguismanalco, Calpan, Chiautzingo, Domingo Arenas,</td>
<td>Buddhaia; Bosque de Pinus hartwegii, Pinus ayacahuite con Abies religiosa, Pastizal</td>
</tr>
<tr>
<td>Zoquiapan y anexas</td>
<td></td>
<td></td>
<td></td>
<td>Nealtican, San Felipe Teotlalcingo</td>
<td>alpino y subalpino</td>
</tr>
</tbody>
</table>

de vertebrados terrestres, 48 especies de mamíferos, (cuatro endémicas), 48 de anfibios y reptiles (27 endémicas) y 64 de aves (nueve endémicas). Desgraciadamente, nueve especies de mamíferos, 31 de reptiles y cuatro de aves se encuentran citadas en la NOM-059-SEMARNAT-2001 bajo alguna categoría de riesgo. Entre las especies amenazadas más emblemáticas destacan el lince (*Lynx rufus*) y la serpiente de cascabel (*Crotalus triseriatus*).

El parque es un área de conectividad entre la Sierra Madre Oriental y la Sierra Madre del Sur. Se considera que las poblaciones de algunos vertebrados silvestres como zorras, gavilanes, comadrejas, conejos y el propio lince, han vuelto a ser notorias en la zona, como efecto de los trabajos de conservación y difusión realizados en el parque con las comunidades locales (CONANP 2009).

Parque Nacional Iztapopó Zoquiapan

Se ubica entre los estados de Puebla, Morelos y de México; de acuerdo a decreto de 1948 la superficie es de 25 679 ha, sin embargo, se puede encontrar el dato de la superficie calculada de 40 591 ha (CONANP, 2010) debido a que incluye la elevación de las montañas donde se ubica el parque; dentro del estado de Puebla se encuentran 11 121 ha, que es el 27 % de su superficie (Cuadro 8.5). Las coordenadas geográficas extremas se muestran en el Cuadro 8.6.

Se ubica dentro de la zona templada subhúmeda de México, en el Eje volcánico transmexicano, región de sierra Nevada, cuenca alta del río Balsas con un gradiente altitudinal entre los 3 000 a los 5 480 msnm, lo que le confiere una amplia diversidad de condiciones climáticas que van desde el templado húmedo hasta el clima frío a muy frío.

Estas condiciones generan un mosaico ecosistémico que incluye bosques templados (*Pinus montezumae* frecuentemente asociado con *Pinus hartwegii*, *P. ayacahuite* y *Abies religiosa*, así como con especies de los géneros *Quercus*, *Abies*, *Arbutus*, *Alnus*, *Salix y Buddhaia*), pastizal alpino, subalpino y páramo de altura. En el ANP se registran 465 especies de todos

<table>
<thead>
<tr>
<th>Límite extremo</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte</td>
<td>98° 40' 18"</td>
<td>19° 28' 2"</td>
</tr>
<tr>
<td>Oeste</td>
<td>98° 46' 40"</td>
<td>19° 20' 29"</td>
</tr>
<tr>
<td>Este</td>
<td>98° 37' 28"</td>
<td>19° 16' 16"</td>
</tr>
<tr>
<td>Sur</td>
<td>98° 40' 27"</td>
<td>19° 14' 36"</td>
</tr>
</tbody>
</table>
los grupos de las que 23 son endémicas y 30 están bajo algún criterio de protección (Cuadro 8.7).

Entre las especies amenazadas se encuentra el co-nejo de los volcanes, zacatuche o tepidaringo (*Romicrolagus diazi*), especie endémica en la categoría de peligro de extinción en la NOM-059-SEMARNAT-2001, y que se considera sumamente vulnerable, lo que ha llevado a la implementación de un programa especial de protección y monitoreo para su conservación.

Aunado a la pérdida y afectación de especies, la problemática del área es muy compleja: por un lado no se han indemnizado las tierras que fueron expropiadas para establecer el Parque Nacional, lo que ha propiciado la inconformidad de ejidatarios y comuneros. Por otra parte en el área del Parque y en su zona de influencia existe la tala clandestina organizada (equipada con motosierras, camiones y armas) y la tala hormiga para la obtención de leña y carbón. Esta situación ha propiciado que en la actualidad se tenga un bosque fragmentado con una cobertura forestal menor al 60 % de su superficie original (CONANP 2009).

Las acciones encaminadas a la protección y recuperación de las condiciones naturales del Parque Nacional se han visto favorecidas a raíz del establecimiento de restricciones de acceso, dadas por la constante actividad del volcán Popocatépetl, además de las acciones de educación ambiental, difusión y trabajo comunitarios que han logrado sacar la ganadería del parque y ampliar las áreas de restauración. Destaca el proyecto denominado “Fábrica de Agua”, que ha sido reconocido y apoyado por organismos nacionales e internacionales.

Reserva de la Biosfera “Tehuacán–Cuicatlán”

La Reserva de la Biosfera “Tehuacán–Cuicatlán” (RBTC) se ubica en los estados de Puebla y Oaxaca, concretamente en la región de donde adquiere el nombre (Valle de Tehuacán–Cuicatlán), región Xerófita Mexicana (Rzedowski 1978); cuenta con una superficie de 490 187 ha (Figura 8.6) (Cuadro 8.8, Cuadro 8.9). La mayor parte de la superficie de la reserva corresponde a tierras Ejidales y Comunales (95 %) distribuida en 132 núcleos agrarios.

Su importante diversidad biológica, geológica y cultural es el resultado de procesos ecológicos y evolutivos influidos por la orografía de las sierras de Zongolica, Negra y Mazateca sobre los valles de Tehuacán, Zapoteclán, la Cañada Oaxaqueña y la Sierra Mixteca. Dadas las condiciones de aridez, las plantas y los animales silvestres han desarrollado una muy importante variedad de estrategias adaptativas que se traducen en una alta biodiversidad; cerca de 3 200 especies de plantas, con un endemismo por arriba del 13 % (Smith 1965, Villaseñor *et al.* 1990), grupo en el que destacan las cactáceas, sobre todo las columnares que en esta región alcanzan su máxima diversificación a nivel mundial. En vertebrados

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Número de especies</th>
<th>Especies en la NOM-059-SEMARNAT-2001</th>
<th>Endémicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hongos</td>
<td>74</td>
<td>1 Pr, 6 A.</td>
<td></td>
</tr>
<tr>
<td>Flora</td>
<td>162</td>
<td>1 Pr</td>
<td></td>
</tr>
<tr>
<td>Vertebrados Terrestres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfibios</td>
<td>6</td>
<td>1 Pr, 3 A.</td>
<td>4</td>
</tr>
<tr>
<td>Reptiles</td>
<td>10</td>
<td>4 Pr, 6 A.</td>
<td>4</td>
</tr>
<tr>
<td>Aves</td>
<td>162</td>
<td>7 Pr, 1 A.</td>
<td>6</td>
</tr>
<tr>
<td>Mamíferos</td>
<td>51</td>
<td>4 Pr, 1 A.</td>
<td>8</td>
</tr>
</tbody>
</table>
Figura 8.6 Bosque de cactáceas en el Valle de Tehuacán (Foto: Stacey Weller)

Cuadro 8.8 Coordenadas geográficas extremas de la Reserva de la Biosfera de “Tehuacán-Cuicatlán”

<table>
<thead>
<tr>
<th>Extremo</th>
<th>Municipios</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremo norte</td>
<td>Tecamachalco, Puebla</td>
<td>18° 52’ 36”</td>
<td>97° 41’ 31”</td>
</tr>
<tr>
<td>Extremo sur</td>
<td>San Juan Bautista Atatlahuca, Oaxaca</td>
<td>17° 32’ 32”</td>
<td>96° 43’ 13”</td>
</tr>
<tr>
<td>Extremo este</td>
<td>San Juan Bautista Atatlahuca, Oaxaca</td>
<td>17° 38’ 57”</td>
<td>96° 41’ 31”</td>
</tr>
<tr>
<td>Extremo oeste</td>
<td>Santiago Chazumba, Oaxaca</td>
<td>18° 13’ 2”</td>
<td>97° 48’ 35”</td>
</tr>
</tbody>
</table>

En el anexo II se enlistan las especies que se encuentran en alguna categoría de riesgo de acuerdo a la NOM-059-SEMARNAT-2001 (Cuadro 8.10).

En el área se encuentran importantes yacimientos fosilíferos que se consideran clave para el estudio del Cretáceo medio en el centro del país (principalmente en el valle de Zapotitlán) y un registro muy completo del proceso de domesticación del maíz (Zea mays), la calabaza (Cucurbita sp.), el amaranto (Amaranthus hypocondriacus) y el aguacate (Persea americana).

Las localidades de la reserva poseen diversos sitios de interés para los visitantes durante todo el año, desde jardines botánicos, parques y senderos interpretativos, sitios arqueológicos e históricos, museos paleontológicos y comunitarios, valles, ríos, cascadas y cañones exuberantes que sirven de refugios a su flora y fauna, así como diversas expresiones culturales entre las que destacan las artesanías (barro bruñido, palma de sombrero, ónix) que han sido galardonadas en concursos nacionales en los últimos años y ferias como las de la Pitaya o la Pitaya, las Tetechas, el Cuchamá y el festival de la Matanza.

Cuadro 8.9

Descripción de la Reserva de la Biosfera Tehuacán-Cuicatlán (CONANP 2009).

<table>
<thead>
<tr>
<th>ANP</th>
<th>Categoría</th>
<th>Fecha de decreto</th>
<th>Superficie aprox. en el estado de Puebla (ha)</th>
<th>Municipios</th>
<th>Ecosistemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehuacán-Cuicatlán</td>
<td>Reserva de la Biosfera</td>
<td>8/sep/1998</td>
<td>183 499.86</td>
<td>Tecamachalco, Palmar de Bravo y Cañada Morelos, Chapulco, San José, Malhuatlán, Tehuacán, Ajalpan, Zinacatepec, Coxcatlán, Zoquitlán, Coyomeapan, Caltepec y Zapotitlán Salinas, Atecal, Tehuacán, Tepanco de López, Tlacotepec de Benito Juárez, Yehualtepec</td>
<td>Matorral Xerófito, Bosque Templado, Bosque Tropical Seco, Bosque Escuamifolio</td>
</tr>
</tbody>
</table>

Cuadro 8.10

Especies de la RBTC protegidas por la NOM-059-SEMARNAT-2001 (CONANP 2009).

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Número de especies</th>
<th>Especies en la NOM-059-SEMARNAT-2001</th>
<th>Endémicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebrados Terrestres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfibios</td>
<td>27</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>83</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Aves</td>
<td>338</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Mamíferos</td>
<td>131</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Flora</td>
<td>3 200</td>
<td>Anexo II</td>
<td>13 %</td>
</tr>
</tbody>
</table>
Áreas naturales protegidas estatales

En el estado de Puebla existen cuatro distintas categorías de protección de ANPs estatales de acuerdo a la Ley para la Protección del Ambiente Natural y el Desarrollo Sustentable del estado de Puebla (2002) (Titulo Tercero, Capítulo I Artículo 63):

I De jurisdicción estatal:
 a) Los parques estatales
 b) Las reservas estatales

II De jurisdicción Municipal:
 a) Las zonas de preservación ecológica de los centros de población

Actualmente existen 10 ANPs de competencia estatal, de las que sólo el parque Flor del Bosque es administrado por el gobierno del estado con la aplicación de su plan de manejo. Las demás áreas no cuenta con personal y hay un fuerte desconocimiento de su biodiversidad y sus condiciones de conservación. Algunas de ellas se ubican dentro de la zona urbana de la ciudad de Puebla por lo que existe la necesidad de hacer una revisión y actualización de estos decretos.

Parque Estatal Flor del Bosque

El parque estatal Flor del Bosque surge a partir de que en el año de 1984 el gobierno del estado adquirió parte de los predios "Flor del bosque", "El charro" y el "Co-yote", que por decreto presidencial del 28 de marzo de 1937 habían sido reconocidos como parte de la zona de protección forestal de Puebla. De esta forma, el 24 de enero de 1987 se inauguró con el nombre de Parque Ecológico Recreativo General Lázaro Cárdenas "Flor del Bosque". Cuenta con una superficie de 664 ha y se ubica en el municipio de Amozoc de Mota, en las coordenadas geográficas 19°00’00” y 19°01’50” de latitud Norte y 98°20’35” y 98°20’53” de longitud Oeste. Presenta altitudes que van de los 2200 a los 2470 msnm. El clima predominante es templado subhúmedo con lluvias en verano, la precipitación promedio anual va de los 700 a los 900 mm y su temperatura promedio anual es de 16 a 18°C.

La vegetación predominante en el parque es el bosque de encino (Quercus spp.) combinado con sabinos (Juniperus spp.) y madroños (Arbutus sp.), el matorral espinoso (uña de gato, cazahuate, biznagas, agaves y nopales), el pastizal y el bosque de eucalipto (estos últimos inducidos). En cuanto a su fauna silvestre se tienen registradas una especie de carpa común (Cyprinus carpio), cuatro especies de anfibios, 13 de reptiles, entre las que destacan la víbora de cascabel enana (Crotalus sp.), el escorpión (Xenosaurus sp.), el chintete y el cincuate mexicano; siete de estas especies son endémicas; se cuenta además con 105 especies de aves, entre las que destacan aves migratorias y rapaces, así como pequeños mamíferos.

En lo que respecta a la operación del parque, su manejo se rige bajo cinco ejes fundamentales:

• Conservación. Se llevan a cabo acciones de protección y manejo de los recursos naturales y de las especies existentes en el área, encaminadas a garantizar su conservación, así como de los procesos y funciones de los sistemas naturales.

• Investigación. Se realizan estudios e investigaciones encaminados a generar información para la conservación de la diversidad biológica y de los procesos y funciones de los sistemas naturales presentes en el área.

• Administración. Se encarga de ejecutar y dar seguimiento a todos los programas, establecer canales de comunicación y participación con los diferentes sectores y administrar eficientemente los recursos materiales, financieros y humanos.

• Educación ambiental y difusión. Tiene la finalidad de ofrecer información sobre la naturaleza y sus valores e importancia, que den como resultado un cambio de actitud y, la implementación de prácticas de protección y aprovechamiento sustentable de los recursos naturales por medio de programas y talleres de educación ambiental dirigidos a la población local y visitantes.

• Aprovechamiento de recursos y uso público. Se realizan programas que brindan los elementos para la diversificación de actividades; incluye todas las actividades de recreación y esparcimiento que ofrece el parque.
Reserva Ecológica Estatal “Cerro Zapotecas”
Esta área fue decretada el 26 de Noviembre de 2008 como reserva estatal con una superficie de 536 ha de bosque de pino-encino, ubicada en el municipio de San Pedro Cholula, entre los paralelos: 19° 03’ 38” y 19 04’ 55” de latitud norte y entre los meridianos 98° 19’ 44” y 98° 20’ 28” de longitud oeste, con un gradiente altitudinal de los 2 175 a los 2 300 msnm (POEP de 2008).

Esta área protegida evitará que la mancha urbana de San Pedro Cholula se siga expandiendo sobre el área forestal, puesto que en la última década la construcción de casas ha ido en aumento en las laderas. Actualmente se encuentra en elaboración el programa de manejo.

Los municipios que recargan sus acuíferos con el agua de lluvia que capta el cerro son: San Pedro Cholula, San Andrés Cholula, Cuautlancingo, Coronango y Juan C. Bonilla (El Sol de Puebla 7 de febrero de 2008).

En el Cuadro 8.11 se muestran los nombres de las otras áreas protegidas estatales de las que no hay más información. Sin embargo, se sugiere que muchas de ellas sean consideradas para su recategorización debido a que la zona urbana las ha absorbido y actualmente no hay vegetación nativa.

Otras áreas
Existen otras zonas propuestas como áreas naturales protegidas y son las siguientes:

Sierra del Tentzon (ANP en proceso)
A partir de mes de julio del año 2008, la entonces Secretaría del Medio Ambiente y Recursos Naturales (SMRN) y el Centro Universitario para la Prevención de Desastres Regional (CUPREDER-BUAP) iniciaron las actividades correspondientes para contar con el Estudio previo justificativo para decretar un área natural protegida en la llamada Sierra del Tentzon y el área boscosa al sur del municipio de Puebla.

Al 2010 se tienen avances en la fase de diagnóstico y caracterización física, biológica y socioeconómica de la zona. Para concluir el estudio, es

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Superficie (ha)</th>
<th>Coordenadas</th>
<th>altitud (msnm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerro Comalo</td>
<td>21.6</td>
<td>19° 01’ 16” N 98° 20’ 44” y 98° 20’ 58” O</td>
<td>2 200</td>
</tr>
<tr>
<td>Cerro de Amalucán</td>
<td>135.9</td>
<td>19° 02’ 36” N 98° 08’ 10” O</td>
<td>2 300</td>
</tr>
<tr>
<td>Cerro Mendocinas</td>
<td>229.9</td>
<td>19° 13’ 24” y 98° 26’ 03” y 98° 27’ 07” O</td>
<td>2 600</td>
</tr>
<tr>
<td>Cerro Tepeyac</td>
<td>95.7</td>
<td>19° 14’ 02” N y 98° 25’ 46” O</td>
<td>2 380</td>
</tr>
<tr>
<td>Cerro Totalqueme</td>
<td>759.8</td>
<td>19° 18’ 58” y 98° 25’ 57” O</td>
<td>2 580</td>
</tr>
</tbody>
</table>
necesario verificar in situ los parámetros físicos, biológicos y socioculturales. Con todo lo anterior, se contará con el estudio completo para continuar con los procedimientos jurídicos y administrativos correspondientes que se indican en la Ley General del Equilibrio Ecológico y Protección al Ambiente (LGEPPA, 2007).

La Sierra del Tentzon se ubica en la zona del centro del estado de Puebla y comprende una amplia región con ecosistemas representativos de bosques de encino de afinidad tropical y templada, selva baja caducifolia y matorral xerófilo, que albergan especies de vertebrados de las zonas tropicales y templadas.

El nombre de Sierra del Tentzon se ha propuesto considerando que la mayor parte de su superficie corresponde a la formación geográfica del mismo nombre, Cerro del Tentzon, que en su ladera oriental, se levanta una eminencia escarpada que tiene la figura de una cara humana con lengua y barba, de donde toma su nombre (Tenzon: barba). Ubicado en el extremo oriente de la sierra es reconocido por los pobladores de la región, como el Cerro de las barbas o el Cerro del Viejito. Esta denominación tiene una sólida base cultural y tradicional desde tiempos prehispánicos, que se ha representado en documentos que datan desde el siglo XII.

Por su ubicación, la Sierra del Tentzon conforma un corredor biológico que permite la conectividad entre grandes zonas de protección; el Parque Nacional Itza-Popó, El Volcán Malintzin y la Reserva ecológica del “Parque Estatal Lázaro Cárdenas del Río, Flor del Bosque”, así como de la Presa de Valsequillo, lo que ha moldeado su importancia ecológica y cultural, representativa del estado de Puebla y que de manera directa e indirecta influyen en su composición biológica, albergando una gran riqueza y diversidad de especies, algunas de ellas endémicas, amenazadas o en peligro de extinción.

El polígono del área propuesta comprende una superficie estimada de 59 444 ha, ubicadas en el centro-sur del estado de Puebla. Se encuentra delimitada por la Presa Manuel Ávila Camacho o Lago de Valsequillo y la ciudad de Puebla al norte, por los cerros y lomeríos de la región Mixteca al sur, por los valles de Atlixco y Matamoros al poniente y por los municipios de Tepeji de Rodríguez y Ahuatempan, al oriente. En la Sierra del Tentzon confluye parte del territorio de 16 municipios (Atlixco, Atoyatempan, Huatatlauca, La Magdalena Tlatlauquitepec, Molcaxac, Ocoyucan, Puebla, San Diego La Mesa Tochimilcozingo, San Juan Atzompá, Huehuetlán El Grande, Tecali de Herrera, Teopantlán, Tepeojuma, Tepeyahualco de Cuauhtémoc, San Juan Tzicatlacoyan) y 34 localidades; presenta una gradiente altitudinal que va de los 1 200 a los 2 500 msnm (INEGI 2000).

Cerro Colorado
La Comisión Nacional de Áreas Naturales Protegidas inició gestiones para fortalecer la red de áreas naturales en el estado por lo que en coordinación con la Secretaría del Medio Ambiente y Recursos Naturales (SMRN) empezaron a realizar actividades para contar con el Estudio Previo Justificativo para decretar un área natural protegida estatal llamada Cerro Colorado, estribación de la Sierra Negra, en el Municipio de Tehuacán y aledaños.

El Cerro Colorado es un área importante debido a que presenta un alto grado de conservación de sus componentes naturales, caracterizado de manera general por tres tipos de vegetación: matorral xerófilo, selva baja caducifolia (el último manchón importante de esta vegetación para el Valle de Tehuacán) y bosques de pino encino en su parte alta, ya que forma parte de la Sierra Negra, lugar de recarga y afluente de recursos hídricos para la parte baja del valle. (Figura 8.7).

Desde el punto de vista cultural posee importantes vestigios arqueológicos como La Mesa, parte de la cultura Popoloca y área de confluencia de otras culturas como la Náhuatl y la Mixteca.

Zonas Federales de Ríos y Cauces Superficiales
El Gobierno Estatal ha colaborado con la Federación con la finalidad de impulsar la declaratoria de zonas de protección y reserva ecológica en las zonas federales de los ríos y cauces que se presentan en el Cuadro 8.12.
Figura 8.7 Cerro colorado. (Foto: Stacey Weller)

Cuadro 8.12 Zonas de protección de ríos y cauces en el estado de Puebla

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Trayectoria (km)</th>
<th>Área de protección de acuerdo a cota histórica</th>
<th>Superficie total (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Alseseca</td>
<td>32</td>
<td>20 m</td>
<td>128.8</td>
</tr>
<tr>
<td>Río Atoyac</td>
<td>28.6</td>
<td>20 m</td>
<td>114.6</td>
</tr>
<tr>
<td>Río Prieto</td>
<td>7.3</td>
<td>20 m</td>
<td>29.2</td>
</tr>
<tr>
<td>Río Amatlapanapa</td>
<td>11.8 km</td>
<td>20 m</td>
<td>48.8</td>
</tr>
<tr>
<td>Río Zapatero</td>
<td>5.9 km</td>
<td>20 m</td>
<td>23.8</td>
</tr>
<tr>
<td>Río Rabanillo</td>
<td>3.2 km</td>
<td>20 m</td>
<td>13</td>
</tr>
<tr>
<td>Río Tlapalac</td>
<td>7.7</td>
<td>20 m</td>
<td>31</td>
</tr>
<tr>
<td>Río Cotzala</td>
<td>4.5</td>
<td>20 m</td>
<td>18</td>
</tr>
<tr>
<td>Río San Francisco</td>
<td>1.1</td>
<td>20 m</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Fuente: (http://www.ine.gob.mx/movueajeli/publicaciones/libros/360/pue.html)
IDENTIFICACIÓN DE LAS REGIONES PRIORITARIAS PARA LA CONSERVACIÓN

La Comisión Nacional para el Conocimiento y el Uso de la Biodiversidad (CONABIO) ha identificado 152 regiones prioritarias terrestres (RTP) cuyo objetivo general es el de determinar unidades estables desde el punto de vista ambiental en la parte continental del territorio nacional, que destacan la presencia de una riqueza ecosistémica y específica, comparativamente mayor que en el resto del país, así como una integridad ecológica funcional significativa donde, además, se tenga una oportunidad real de conservación por sus características biológicas. De esta forma el conjunto de RTP hace una superficie estimada de 407 151 km² (20.6 % del territorio nacional) de las que 30 ya formaban parte del Sistema Nacional de Áreas Naturales Protegidas (SINAP) o estaban incluidas en áreas naturales protegidas, anteriormente decretadas (Cuadro 8.13).

Como antecedentes se tomaron en cuenta los diferentes esquemas que se han diseñado a nivel nacional, como la propuesta de la CONABIO sobre las regiones prioritarias terrestres (Arriaga et al. 2000), el esquema de las AICA, Áreas de Importancia para la Conservación de las Aves (Coro-Arizmendi et al. 2000) y otras propuestas de nivel estatal.

En el estado de Puebla hay ocho RTP’s ubicadas de manera marginal en su territorio:

1) Bosques mesófilos de la Sierra Madre Oriental
2) Cuetzalan
3) La Malinche
4) Sierra Nevada
5) Sierras de Taxco-Huautla
6) Valle de Tehuacán-Cuicatlán
7) Pico de Orizaba-Cofre de Perote
8) Sierras del norte de Oaxaca-Mixe

En el cuadro 8.13 se muestra la coincidencia que existe entre los diferentes tipos de RTP’s y las ANPs en el estado, lo que puede fortalecer las acciones que se realizan para la conservación de la biodiversidad.

Las regiones hidrológicas prioritarias (RHP) tienen el objetivo de generar un diagnóstico de las principales subcuencas y sistemas acuáticos del país, considerando las características de biodiversidad y los patrones sociales y económicos de las áreas identificadas, para establecer un marco de referencia que pueda ser considerado por los diferentes sectores para el desarrollo de planes de investigación, conservación, uso y manejo sostenido (Arriaga et al. 2002). En Puebla convergen dos RHPs:

- 70 Cuenca Oriental
- 76 Río Tecolutla

Estas dos regiones están fuertemente impactadas por la agricultura y el sobrepastoreo, la explotación de acuíferos y el cultivo de peces exóticos. La Cuenca de Oriental comprende parte del Parque Nacional La Malinche y presenta la misma problemática del ANP: cambio de uso del suelo por agricultura, tala

<table>
<thead>
<tr>
<th>ANP</th>
<th>RTPs</th>
<th>RHPs</th>
<th>AICAs</th>
</tr>
</thead>
</table>
| Cuenca Hidrográfica del río Necaxa | 102 - Bosques mesófilos de la Sierra Madre Oriental
105 - Cuetzalan | 76. Río Tecolutla | C-47 |
| La Malinche | 106 - La Malinche
120 - Sierras de Taxco-Huautla | 70. Cuenca Oriental | C-52
C-49 |
| Tehuacán-Cuicatlán | 121 - Valle de Tehuacán-Cuicatlán | | C-31 |
| Pico de Orizaba | 122 - Pico de Orizaba-Cofre de Perote
130 - Sierras del norte de Oaxaca-Mixe | | |
| Ixta - Popo | 107 - Sierra Nevada | | C-72 volcanes
Iztaccíhuatl- Popocatépetl |
inmoderada, pastoreo, incendios forestales, construcción de carreteras, sobreexplotación de agua para uso urbano, así como problemas de erosión hídrica y eólica, además de la salinización de los suelos y del agua (Arriaga et al. 2000).

El río Tecolutla tiene su origen en la Sierra Norte de Puebla y alimenta a la presa de Necaxa; su conservación se ha visto comprometida debido a la tala inmoderada en la cuenca alta y a la contaminación por coliformes totales en la cuenca media y baja. En contraste, algunas fuentes de información consideran que éste es uno de los ríos mejor conservados de Veracruz.

Otro factor relevante son las Áreas de Importancia para la Conservación de las Aves (AICAS). El programa de las AICAS surgió como una idea conjunta de la Sección Mexicana del Consejo Internacional para la Preservación de las Aves (CIPA-MEX) y BirdLife International. Inició con apoyo de la Comisión para la Cooperación Ambiental de Norteamérica (CCA) con el propósito de crear una red regional de áreas importantes para la conservación de las aves. Actualmente se han identificado 230 áreas, que quedaron clasificadas dentro de alguna de las 20 categorías definidas con base en criterios de la importancia de las áreas en la conservación de las aves; estos criterios resultaron de discusiones trilaterales y se adaptaron a partir de los utilizados por BirdLife International. Asimismo, se concluyó una lista de cinco áreas de prioridad mayor por región, en donde se tienen identificados los grupos locales que son capaces de implementar un plan de conservación en cada AICA, teniendo como objetivos el generar herramientas de difusión que sean utilizadas como una guía para fomentar el turismo ecológico tanto a nivel nacional como internacional y fomentar la cultura ecológica, especialmente en lo referente a las aves, sirviendo de base para la formación de clubes de observadores y de otros tipos de grupos interesados en el conocimiento y la conservación de estos animales.

Las AICAS ubicadas total o parcialmente en el estado de Puebla se presentan en el Cuadro 8.14.

Cuadro 8.14 AICAS en el estado de Puebla (CONABIO 2000)

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Número</th>
<th>Especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcanes Iztaccihuatl- Popocatépetl</td>
<td>AICA C-72</td>
<td>193</td>
</tr>
<tr>
<td>Sierra de Huautla</td>
<td>AICA C-49</td>
<td>139</td>
</tr>
<tr>
<td>La Malinche</td>
<td>AICA C-52</td>
<td>78</td>
</tr>
<tr>
<td>Cuetzalan</td>
<td>AICA C-47</td>
<td>61</td>
</tr>
<tr>
<td>El Valle de Tehuacán</td>
<td>AICA C-31</td>
<td>89</td>
</tr>
</tbody>
</table>

CONSERVACIÓN EX SITU

Cecilia Leticia Hernández Hernández, Dani Newcomb

La conservación ex situ tiene la finalidad de preservar especímenes de especies nativas y exóticas fuera de su hábitat natural, a través de diferentes mecanismos:

- Bancos de genes y de semillas. Incluye bancos en campo y bancos de esperma y óvulos.
- Colecciones in vitro de tejidos de plantas y cultivos microbianos.
- Reproducción en cautiverio de animales y propagación artificial de plantas, con la posible reintroducción de estas especies a la naturaleza.
- Recolección de organismos vivos (zoológicos, acuarios y jardines botánicos) para la investigación, educación y conciencia pública.

Este tipo de actividades proporciona excelentes oportunidades para la investigación de los componentes de la diversidad biológica depositados o coleccionados. Una variedad de instituciones como
los bancos de semillas, centros de recursos microbianos, zoológicos, acuarios y jardines botánicos, tanto internacionales como nacionales, están involucrados en su investigación y conservación.

Bancos de semillas y germoplasma
Existen varios bancos de germoplasma en el estado:

El Banco de Germoplasma de la Universidad de las Américas, Puebla
El banco de germoplasma de la Universidad de las Américas tiene el objetivo de contribuir a la conservación de germoplasma local y desarrollar una base de datos sobre las especies y variedades frutales del altiplano poblano. El Huerto Frutal de la misma Universidad funciona como un banco de germoplasma en el que se conservan y propagan algunas especies y variedades frutales del Altiplano Poblano. Son sistemas agroforestales que presentan una mezcla de especies, variedades y técnicas de manejo y cultivo.

Banco de germoplasma de CONAFOR-SMRN
La SMRN impulsó un proyecto para el establecimiento de un laboratorio de germoplasma en Chignahuapan dentro de las acciones del Programa de Restauración Forestal. Este proyecto contempla el mejoramiento del manejo de semillas de especies forestales para fortalecer la producción de plantas de calidad en los 25 viveros de la entidad.

De igual forma, en Puebla se cuenta con cuatro huertos semilleros: tres en la región de Zacatlán y otro en la región de Cholula, así como un banco de germoplasma cuya función es la de almacenar y conservar semilla forestal bajo condiciones controladas de temperatura y humedad, para mejorar el porcentaje de gminación de las semillas que serán utilizadas en años posteriores.

Banco Nacional de Germoplasma Vegetal “Salvador Miranda Colín”
El Colegio de Postgraduados ha realizado colectas de maíz en el estado. En las Muestras Regionales de Semillas Criollas organizadas por el Campus Puebla en la década de los 90, se colectaron muestras de semilla de maíz, enviándose un total de 508 ac-

Jardines botánicos

El Jardín Botánico de la Benemérita Universidad Autónoma de Puebla
El jardín botánico de la Benemérita Universidad Autónoma de Puebla tiene el objetivo de albergar una colección de plantas nativas del estado con los propósitos de conservación, investigación y educación. El Jardín Botánico tiene una superficie de 11 hectáreas a una altitud de 2 150 y está ubicado dentro del Campus Universitario, su clima es de tipo templado subhúmedo. El Jardín Botánico de la Benemérita Universidad Autónoma de Puebla cuenta con más de 1 000 especies, tanto silvestres como cultivadas, que se reparten en ocho secciones; tres están dedicadas a albergar ejemplares representativos de las zonas norte, centro y sur del estado; cuatro están destinadas a las colecciones especiales de cactáceas, coniferas, encinos y palmas, además de la sección de plantas de importancia económica. Todo este ambiente se complementa con una zona natural inundable donde se desarrollan diferentes especies nativas de la región central de la entidad y una bella isla rodeada por un lago artificial que hace el deleite de sus visitantes.
Jardín Etnobotánico “Francisco Peláez”
El Jardín Etnobotánico tiene sus orígenes en 1993. Nace del deseo de la Dra. Eloína Peláez de crear un jardín de hierbas, es decir, plantas que han sido consideradas útiles por sus propiedades medicinales, culinarias, cosméticas, tintóreas, aromáticas y otras. Casi simultáneamente surge la idea de utilizar las plantas para producir diversos productos naturales; de ahí la creación de *Rosmarinus*, una empresa dedicada a la elaboración y venta de productos herbales con el objetivo de fortalecer el uso de las hierbas en diferentes aspectos de la vida cotidiana. El jardín original se desarrolló en las afueras de Puebla donde todavía existe como parte de las instalaciones de la empresa, pero en 1996 se extendió a Buenotla, San Andrés Cholula. La conservación de las plantas y de la biodiversidad de la región es un tema significativo en el Jardín y se definió como un objetivo central. En Cholula, la urbanización está destruyendo la vida silvestre de una forma muy rápida. Ante esto, se están estudiando y documentando las plantas de la región y sus usos.

En el año 1999, el jardín se definió como Jardín Etnobotánico, es decir enfocado en la relación entre plantas y humanos. El objetivo es el cultivo de las plantas útiles; desde el principio se pretendió dar un perfil distintivo a la investigación y docencia. Se ve a las plantas no tanto como objetos que hay que clasificar y catalogar, sino a partir de la aportación que hacen a la vida y la necesidad vital de las personas y así desarrollar otra relación con ellas. Las plantas no se pueden entender sin estudiar su entorno natural. Por esta razón se han desarrollado en los últimos años proyectos sobre los insectos y las aves de la región. De ser un Jardín Etnobotánico, se está convirtiendo cada vez más en un centro de estudio y conservación de vida silvestre. (http://www.jardinetnobotanico.org)

Jardín Botánico “Louisa Wardle de Camacho”
Se encuentra en las instalaciones de *Africam Safari*, en Valsequillo, Puebla. Cuenta con tres tipos de vegetación representativos de los ecosistemas del estado: bosque tropical caducifolio, bosque de encino y el matorral xerófilo. En materia de educación, cuenta con visitas guiadas todos los fines de semana; de lunes a viernes se hacen sólo con reservación. Cuenta con talleres sobre taxonomía vegetal, insec-.

cidicas naturales, plantas aromáticas y jardinería.

Jardín Botánico Xoxoctic
Se localiza en Cuetzalan, Puebla y se ha enfocado a la recuperación y preservación de la flora característica del bosque mesófilo de montaña, que incluye los helechos arborescentes, las orquídeas y las heliconias, entre otras. Hasta el momento las actividades que realizan son: talleres temáticos sobre café e interpretación de la naturaleza, en los 600 m de senderos que tiene el lugar, y tiene un convenio con el Instituto Tecnológico de Zacapoaxtla para que los alumnos puedan realizar sus prácticas profesionales, así como estudios taxonómicos y de conservación, entre otros.

El Jardín Botánico “Helia Bravo Hollis” de Zapotitlán Salinas, Puebla
Es uno de los museos vivientes más importantes de México. El lugar debe su nombre a la investigadora que en vida fue considerada la máxima autoridad de cactología de nuestro país. Este sitio se localiza dentro de la Reserva de la Biosfera Tehuacán-Cuicatlán, donde se alberga una gran cantidad de cactáceas globosas y columnares y otras especies del matorral xerófilo (Figura 8.8). Allí se realizan actividades de educación ambiental, interpretación de la naturaleza, observación de aves, de flora, caminatas y fotografía; es un espacio para la investigación científica (Botánica) y para la reproducción y propagación de plantas nativas a través de UMAS; se efectúa también la muestra gastronómica de temporada (te-
chtechas, cuchamá, palmitos, cocopaches).

Reproducción de especies en cautiverio/zoológicos

Africam Safari
Es una organización sustentable que proporciona experiencias divertidas, innovadoras y de aventura a través de momentos de inmersión en la naturaleza, dentro de un ambiente seguro y familiar. Se resguarda y protege la vida silvestre, buscando cambiar
Figura 8.8 Jardín botánico Helia Bravo Hollis. (Foto: Stacey Weller)

actitudes para conservar ecosistemas, cimentando una nueva cultura de amor y respeto por la naturaleza. Representa al Grupo Especialista en Reproducción y Cría (CBSG/SSC/IUCN) en México, que se dedica a salvar especies amenazadas al incrementar la efectividad de los esfuerzos de conservación en todo el mundo. En los últimos cinco años, el CBSG en México ha trabajado con la Oficina de EspeciesPrioritarias de la Comisión Nacional de Áreas Naturales Protegidas para hacer frente a las necesidades y a los requisitos del gobierno mexicano con respecto a la conservación de las especie mexicanas en peligro de extinción (http://www.africamsafari.com.mx/conservacion.php).

Aviario de Puebla

Desde sus inicios en 1991 año en el que la Unión de Capturadores, Transportistas y Vendedores del Aves Canoras y de Ornato se hace cargo de la administración y operación del Aviario, un centro de exposición de especies en peligro de extinción, actualmente cuenta con 150 especies de aves; entre sus objetivos se pueden mencionar la conservación de la avifauna del estado de Puebla in situ y ex situ, la investigación en torno a la identificación de aves silvestres, así como el manejo y reproducción de aves en cautiverio logrando reproducir hasta la fecha 52 especies de aves mexicanas; la educación es otro de sus objetivos, contando actualmente con recorridos guiados, talleres
y cursos para niños y adolescentes, con los temas: “El Mundo de las Aves” y “Biodiversidad” así como capacitación para grupos de base sobre construcción y manejo de UMAS (Figura 8.9).

CONSERVACIÓN DE SUELOS

Portia Antonietta Isidro Vázquez

La fuerte presión ejercida por la creciente población humana sobre los recursos naturales en los últimos 200 años está provocando la desertificación de millones de hectáreas en el mundo, lo que se manifiesta principalmente por la erosión del suelo (Becerra 1998).

El suelo es un recurso natural cuya degradación ha sido poco perceptible y escasamente atendida por programas gubernamentales, a pesar de ser fundamental para sostener los procesos productivos de los ecosistemas. Por ello, su conservación y restauración es indispensable para evitar su pérdida, degradación y erosión, que normalmente comienzan por la deforestación y el daño de la cubierta vegetal, abatiendo su capacidad de retención y filtración de agua, lo que favorece la disminución de los mantos freáticos y la calidad del líquido (Contreras et. al. 2006).

La erosión acelerada de los suelos y la degradación del entorno en muchas zonas montañosas del estado de Puebla viene ocurriendo desde hace décadas, debido principalmente, a la introducción de la agricultura en ladera. Poco o nada se hace para detener este proceso que se extiende cada vez con mayor fuerza sobre las zonas forestales, y pese a las características favorables que presentan los ecosistemas montañosos, los suelos se vuelven cada vez menos productivos, debido a la explotación indiscriminada a la que han sido sometidos. (Becerra 1998).

Figura 8.9 Aviario de puebla. (Foto: Cecilia Hernandez Hernandez)
Debido a esto, es importante aplicar programas que se orienten a reducir la expansión de las actividades agropecuarias en las zonas forestales, incorporando criterios de sustentabilidad y fomentando tecnologías que eviten la erosión del suelo, pérdida de nutrientes, de riqueza microbiana y de su capacidad de retención de humedad y captación de agua, soporte estructural y resistencia a la degradación, factores que le dan calidad al suelo para funcionar adecuadamente (Vergara y Etchevers 2004).

De acuerdo a la SEMARNAT (2002), la degradación de suelos en el estado de Puebla, conforme a los procesos y niveles de degradación, afecta una superficie de 1 499 437 ha (Cuadro 8.15 y 8.16), dato que al compararse con la extensión total del estado comprende el 43.73 % de área afectada.

En el Cuadro 8.17, se presentan los principales tipos de vegetación y uso de suelo con mayor degradación de suelo a nivel nacional y que se encuentran presentes en el estado de Puebla.

De acuerdo a las estadísticas de la SMRN del estado de Puebla, en el año 2008 se registraron en los 217 municipios de la entidad 200 238.694 ha con alto grado de erosión, lo que equivale al 5.84 % del territorio estatal. Para la prevención de este problema, entre los años 2005 y 2007 se llevó a cabo el Programa de Control de Erosión, que hasta el momento se ha aplicado en 48 municipios del estado, entre los que se encuentran: Acajete, Acatlán, Ahuehuetatl, Ajalpan, Amozoc, Aquixtla, Atixco, Atoyatempan, Atzitzihuacan, Atzitzintla, Ayotoxco de Guerrero, Cañada Morelos, Chalchicomula de Sesma, Chapulco, Chiautla, Chietla, Chila, Cohetzala, Coyomeapan, Guadalupe, Ixtacamatcitlán, Ixtepec, Mazapiltepec de Juárez, Mixtla, Nauzontla, Nicolás Bravo, Nopalucan, Piaxtla, Puebla, San Antonio Cañada, San Felipe Teotlalcingo, San Jerónimo Xayacatlán, San Matías Tlalancaleca, San Nicolás de los Ranchos, San Pablo Anicano, Tecali de Herrera, Teopantlan, Teotlalco, Tepanco de López, Tepeyahualco, Tianquismanalco, Tlachichuca, Tlatlauquitepec, Totoltepec de Guerrero, Tuzamapan de Galeana, Tzicatlocoyan, Vicente Guerrero, Zacapaotla y Zacatlán. En estos municipios se han implementado

Cuadro 8.15 Procesos de degradación por superficie afectada en el estado de Puebla (SEMARNAT, 2002).

<table>
<thead>
<tr>
<th>Proceso de degradación</th>
<th>Superficie afectada (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degradación física</td>
<td>97 269</td>
</tr>
<tr>
<td>Degradación química</td>
<td>741 312</td>
</tr>
<tr>
<td>Erosión eólica</td>
<td>323 190</td>
</tr>
<tr>
<td>Erosión hídrica</td>
<td>337 464</td>
</tr>
<tr>
<td>Total</td>
<td>1 499 435</td>
</tr>
</tbody>
</table>

Cuadro 8.16 Degradación de suelos: superficie afectada por procesos, según niveles de degradación (SEMARNAT, 2002).

<table>
<thead>
<tr>
<th>Procesos de degradación</th>
<th>Ligera (ha)</th>
<th>Moderada (ha)</th>
<th>Severa (ha)</th>
<th>Extrema (ha)</th>
<th>Total (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degradación física</td>
<td>60 632.63</td>
<td>5 442.45</td>
<td>8 246.26</td>
<td>22 948.36</td>
<td>97 269.71</td>
</tr>
<tr>
<td>Degradación química</td>
<td>549 279.52</td>
<td>192 032.53</td>
<td>0.0</td>
<td>0.0</td>
<td>741 312.05</td>
</tr>
<tr>
<td>Erosión hídrica</td>
<td>208 411.17</td>
<td>119 915.76</td>
<td>9 138.03</td>
<td>0.0</td>
<td>337 469.96</td>
</tr>
<tr>
<td>Erosión eólica</td>
<td>207 539.33</td>
<td>115 651.10</td>
<td>0.0</td>
<td>0.0</td>
<td>323 190.43</td>
</tr>
</tbody>
</table>
acciones como: 1) construcción y rehabilitación de presas de gaviones, 2) construcción de terrazas de zanja y bordo, 3) elaboración de estufas rurales y 4) obras de conservación de suelo y agua, beneficiando de manera directa a 19 374 personas y de forma indirecta a 406 820 habitantes (Figura 8.10).

De acuerdo al informe presentado en el 2006 por el entonces secretario Francisco Castillo (SMRN 2006), se llevaron a cabo acciones para el control de la erosión en 1 200 de terrenos forestales, donde se hicieron presas filtrantes, obras de almacenamiento de agua y manejo de escurrimientos.

Así mismo, Castillo (2006) informó sobre las acciones que se realizaron en relación a la conservación de suelos en las áreas naturales protegidas de Puebla, entre las que se encuentran: 1) mantenimiento a 300 has de plantaciones, 2) construcción de 323 kilómetros de terrazas de zanja y bordo para contribuir a la restauración de 323 de terrenos con problemas de erosión, 3) construcción de 132 obras para la retención de agua y control de azolves para la protección de terrenos con problemas de erosión en áreas naturales, 4) construcción de 250 estufas rurales y 5) rehabilitación de ocho kilómetros de caminos forestales.

Cuadro 8.17 Principales tipos de vegetación y uso de suelo con degradación en México. SEMARNAT, 2002

<table>
<thead>
<tr>
<th>Tipos de vegetación y uso de suelo</th>
<th>Superficie degradada (ha)</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrícola, pecuaria y forestal</td>
<td>30 518 743.32</td>
<td>35.60</td>
</tr>
<tr>
<td>Bosque templado</td>
<td>11 966 481.19</td>
<td>13.96</td>
</tr>
<tr>
<td>Matorral xerófilo</td>
<td>14 798 457.52</td>
<td>17.26</td>
</tr>
</tbody>
</table>

La reforestación es una estrategia de conservación que propone recuperar en forma progresiva la cubierta vegetal perdida por diversas causas, principalmente incendios forestales, así como inducir prácticas de manejo que protejan, conserven y mejoren los recursos forestales; además, promover una mayor conciencia y cultura ecológica en toda la población, en particular entre poseedores de bosques y selvas (Contreras et. al. 2006).

La Comisión Nacional Forestal (CONAFOR) en el 2006 dio a conocer la superficie reforestada para los diferentes estados de la República Mexicana y de acuerdo a los datos obtenidos para Puebla en el periodo 1993-2006 se reforestaron 102 598 ha en la entidad (Cuadro 8.18).
CONTROL DE EROSIÓN

LUGARES DONDE SE DA EL CONTROL DE LA EROSIÓN

AÑO
- 2006
- 2007
- 2008

Fuente: Límites de las Áreas Naturales Protegidas del Estado de Puebla y las áreas protegidas (SMRN).

Figura 8.10 Control de erosión (INEGI-SMRN, 2009)
Figura 8.11 Áreas de reforestación en el estado de Puebla. (INEGI-SMRN, 2009)
La superficie de plantaciones forestales comerciales que se estableció para el estado de Puebla en el periodo 1996-2000 fue de 6 880 ha (SMRN 2006), en tanto que las principales especies utilizadas para este fin, en el periodo del 2000 al 2004, fueron pino (Pinus spp.), eucalipto (Eucalyptus sp.), cedro (Cedrela odorata), caoba (Swietenia macrophylla), teca (Tectona grandis), melina (Gmelina arborea) y cedro rosado (Acrocarpus frainifolius) (Cuadro 8.19). Con estas especies se reforestaron 13 500 ha (SMRN 2005) (Figura 8.12).

Los productos que se obtuvieron de estas plantaciones fueron, principalmente, árboles de navidad, de ornato, madera de aserrío, postes, leña y carbón (SMRN 2005).

El número de plantas producidas para realizar actividades de reforestación, de acuerdo a la SMRN para el 2006, fue de 118 191 868 plantas (Cuadro 8.20) en tanto que en el programa de reforestación urbana y rural (SEMARNAT 2005) se reportaron de 1993 al 2004 un total de 124 677 776 árboles sembrados (Cuadro 8.21).

En el año 2005 se aplicó el Programa de Restauración de Terrenos Forestales para el estado de Puebla (SMRN 2005), llevándose a cabo actividades de reforestación en 106 municipios de la entidad, con una producción de 8 689 032 plantas, para reforestar 8 482 ha.

A través del programa de Restauración de Terrenos Forestales (SMRN 2006) se llevaron a cabo acciones de reforestación en 44 municipios del estado. Se produjeron 16 633 889 plantas para reforestar 15 040.74 ha.

De acuerdo a la SMRN, en el ciclo 2006-2007 hubo una producción de 22 375 000 plantas en 23

Cuadro 8.18 Estadísticas de la superficie reforestada para el estado de Puebla (SMRN, 2006).

<table>
<thead>
<tr>
<th>Año</th>
<th>Número de hectáreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>575</td>
</tr>
<tr>
<td>1994</td>
<td>1 049</td>
</tr>
<tr>
<td>1995</td>
<td>1 289</td>
</tr>
<tr>
<td>1996</td>
<td>3 420</td>
</tr>
<tr>
<td>1997</td>
<td>4 169</td>
</tr>
<tr>
<td>1998</td>
<td>10 767</td>
</tr>
<tr>
<td>1999</td>
<td>11 413</td>
</tr>
<tr>
<td>2000</td>
<td>7 496</td>
</tr>
<tr>
<td>2001</td>
<td>7 996</td>
</tr>
<tr>
<td>2002</td>
<td>24 971</td>
</tr>
<tr>
<td>2003</td>
<td>11 667</td>
</tr>
<tr>
<td>2004</td>
<td>8 209</td>
</tr>
<tr>
<td>2005</td>
<td>9 577</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
</tr>
</tbody>
</table>

Cuadro 8.19 Principales árboles utilizados en las plantaciones forestales comerciales en Puebla.

<table>
<thead>
<tr>
<th>Entidad</th>
<th>Año</th>
<th>Superficie plantada (ha)</th>
<th>Pino (Pinus spp.)</th>
<th>Eucalipto (Eucalyptus sp.)</th>
<th>Cedro (Cedrela odorata)</th>
<th>Caoba (Swietenia macrophylla)</th>
<th>Teca (Tectona grandis)</th>
<th>Melina (Gmelina arborea)</th>
<th>Cedro rosado (Acrocarpus frainifolius)</th>
<th>Otras especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puebla</td>
<td>2000</td>
<td>2 700</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>2 700</td>
<td>Sí</td>
<td>No</td>
<td>Si</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>2 700</td>
<td>Sí</td>
<td>No</td>
<td>Si</td>
<td>Si</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>2 700</td>
<td>Sí</td>
<td>No</td>
<td>Si</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>2 700</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Figura 8.12 Sitios de establecimiento de plantaciones forestales comerciales. (INEGI-SMRN, 2009)
Cuadro 8.20 Producción de plantas para reforestación en el estado de Puebla (SMRN, 2006).

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción (número de plantas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>7 973 378</td>
</tr>
<tr>
<td>1994</td>
<td>602 000</td>
</tr>
<tr>
<td>1995</td>
<td>3 001 923</td>
</tr>
<tr>
<td>1996</td>
<td>15 850</td>
</tr>
<tr>
<td>1997</td>
<td>5 394 598</td>
</tr>
<tr>
<td>1998</td>
<td>11 241 159</td>
</tr>
<tr>
<td>1999</td>
<td>11 792 314</td>
</tr>
<tr>
<td>2000</td>
<td>8 460 000</td>
</tr>
<tr>
<td>2001</td>
<td>9 000 000</td>
</tr>
<tr>
<td>2002</td>
<td>9 000 000</td>
</tr>
<tr>
<td>2003</td>
<td>15 811 230</td>
</tr>
<tr>
<td>2004</td>
<td>10 145 000</td>
</tr>
<tr>
<td>2005</td>
<td>9 920 260</td>
</tr>
<tr>
<td>2006</td>
<td>118 191 868</td>
</tr>
</tbody>
</table>

Cuadro 8.21 Reforestación Urbana y Rural (SEMARNAT, 2005).

<table>
<thead>
<tr>
<th>Año</th>
<th>Urbana</th>
<th>Rural</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>2 649 000</td>
<td>578 000</td>
<td>3 227 000</td>
</tr>
<tr>
<td>1994</td>
<td>4 333 980</td>
<td>764 820</td>
<td>5 098 800</td>
</tr>
<tr>
<td>1995</td>
<td>603 089</td>
<td>4 354 211</td>
<td>4 957 300</td>
</tr>
<tr>
<td>1996</td>
<td>1 599 195</td>
<td>8 374 514</td>
<td>9 973 709</td>
</tr>
<tr>
<td>1997</td>
<td>682 086</td>
<td>10 717 914</td>
<td>11 400 000</td>
</tr>
<tr>
<td>1998</td>
<td>1 398 714</td>
<td>12 117 451</td>
<td>13 516 165</td>
</tr>
<tr>
<td>1999</td>
<td>1 769 517</td>
<td>14 271 420</td>
<td>16 040 937</td>
</tr>
<tr>
<td>2000</td>
<td>1 358 861</td>
<td>9 261 053</td>
<td>10 619 914</td>
</tr>
<tr>
<td>2001</td>
<td>753 254</td>
<td>9 261 415</td>
<td>10 014 669</td>
</tr>
<tr>
<td>2002</td>
<td>856 689</td>
<td>18 337 756</td>
<td>19 194 445</td>
</tr>
<tr>
<td>2003</td>
<td>408 906</td>
<td>12 158 699</td>
<td>12 567 605</td>
</tr>
<tr>
<td>2004</td>
<td>214 686</td>
<td>7 852 546</td>
<td>8 067 232</td>
</tr>
</tbody>
</table>
Cuadro 8.22 Producción de plantas en 25 viveros del estado de Puebla (SMRN 2005-2006).

<table>
<thead>
<tr>
<th>Nombre del vivero</th>
<th>Producción de planta</th>
<th>Inversión total</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Vergel</td>
<td>500 000</td>
<td>$ 501 607.00</td>
</tr>
<tr>
<td>Cabrera</td>
<td>367 804</td>
<td>$ 368 986.00</td>
</tr>
<tr>
<td>El Manantial Forestal</td>
<td>600 000</td>
<td>$ 601 929.00</td>
</tr>
<tr>
<td>San Martín</td>
<td>1 700 000</td>
<td>$ 1 705 465.00</td>
</tr>
<tr>
<td>San Rafael Ixtapalucan</td>
<td>300 000</td>
<td>$ 300 964.00</td>
</tr>
<tr>
<td>La Ceiba</td>
<td>200 000</td>
<td>$ 200 643.00</td>
</tr>
<tr>
<td>Xicotepec</td>
<td>400 000</td>
<td>$ 401 286.00</td>
</tr>
<tr>
<td>Izúcar</td>
<td>200 000</td>
<td>$ 200 643.00</td>
</tr>
<tr>
<td>Ejido Texcalapa</td>
<td>1 000 000</td>
<td>$ 1 003 215.00</td>
</tr>
<tr>
<td>Las Presas</td>
<td>1 000 010</td>
<td>$ 1 003 225.00</td>
</tr>
<tr>
<td>Libres</td>
<td>283 000</td>
<td>$ 283 910.00</td>
</tr>
<tr>
<td>Santa Catarina</td>
<td>362 000</td>
<td>$ 363 164.00</td>
</tr>
<tr>
<td>Xoyatlan</td>
<td>400 000</td>
<td>$ 401 286.00</td>
</tr>
<tr>
<td>Cuautempan</td>
<td>400 000</td>
<td>$ 401 286.00</td>
</tr>
<tr>
<td>Mazatepec</td>
<td>200 000</td>
<td>$ 200 643.00</td>
</tr>
<tr>
<td>Atoluca</td>
<td>350 000</td>
<td>$ 351 125.00</td>
</tr>
<tr>
<td>Xochitlán de Vicente Suárez</td>
<td>300 000</td>
<td>$ 300 964.00</td>
</tr>
<tr>
<td>Esperanza del Mañana</td>
<td>800 000</td>
<td>$ 802 572.00</td>
</tr>
<tr>
<td>Pueblo Nuevo</td>
<td>2 315 000</td>
<td>$ 2 322 442.00</td>
</tr>
<tr>
<td>Ixtlahuaca</td>
<td>2 067 000</td>
<td>$ 2 073 645.00</td>
</tr>
<tr>
<td>El Sotolín</td>
<td>200 000</td>
<td>$ 200 643.00</td>
</tr>
<tr>
<td>Ajalpan</td>
<td>300 000</td>
<td>$ 300 964.00</td>
</tr>
<tr>
<td>Coacoyunque</td>
<td>1 000 000</td>
<td>$ 1 003 215.00</td>
</tr>
<tr>
<td>Rancho Cabras</td>
<td>1 000 000</td>
<td>$ 1 003 215.00</td>
</tr>
<tr>
<td>Chichicapa</td>
<td>300 000</td>
<td>$ 300 964.00</td>
</tr>
<tr>
<td>Totales</td>
<td>16 544 814</td>
<td>$ 16 598 001.00</td>
</tr>
</tbody>
</table>
municipios de la entidad, donde de manera directa se benefició a 14 864 personas y de manera indirecta a 265 974. Se contó con una inversión federal y estatal de $ 21 800 000.00.

Entre otras acciones se realizó el mejoramiento, fomento y aumento en la producción de plantas para reforestar en 10 municipios de Puebla, lográndose en este año una producción de 3 550 000 plantas, invirtiéndose en total $13 940 Los beneficiarios directos fueron 4 752 personas y de forma indirecta 81 931 habitantes de diferentes municipios.

Una acción más en este período fue el establecimiento de un laboratorio de germoplasma en el vivero de Pueblo Nuevo, municipio de Chignahuapan, con una inversión estatal de $500 000 donde se beneficiaron 170 personas y de manera indirecta 553.

Así mismo, en el ciclo 2007-2008 la SMRN, a través del programa de Restauración en Terrenos Forestales, llevó a cabo acciones sobre ampliación de áreas de producción y germoplasma forestal. En el caso de la primera se produjeron 37 843 789 plantas, donde se invirtieron $ 69 354 000 los beneficiarios directos fueron 23 644 personas y los indirectos 352 135. Por el desarrollo de esta acción se vieron beneficiados 30 municipios, en los que se encuentran: Xicotepec, Jalapa, Aquixtla, Ixtaca-

mxitlán, Chignahuapan, Zacatlán, Tlatlaquitepec, Teziutlán, Xochitlán de Vicente Suárez, Cuetzalan del Progreso, Tlachichuca, Atitzintla, Lafragua, Chal- chicomula de Sesma, Libres, San Sebastián Tlacote-

pec, Tehuacán, Ajalpan, Nicolás Bravo, Elxochitlán, Vicente Guerrero, Zoquitlán, Atlixco, Chietla, Tecali de Herrera, San Martín Texmelucan, Tlahuapan, Amozoc de Mota, Palmar de Bravo y Coyotepec.

En cuanto a la acción de germoplasma forestal se trabajó en 12 municipios: Aquietla, Chignahua-

pan, Zacatlán, Tecali de Herrera, Tlatlaquitepec, Chignahuapan, Ixtacaxmitlán, Cuetzalan del Pro- greso, Coyotepec, Atitzintla, Tlachichuca, Libres y Palmar de Bravo, el germoplasma se colectó en diferentes predios.

De acuerdo a la SMRN (2008), se realizaron plantaciones comerciales en 44 municipios del estado, entre los que se encuentran: Acatlán, Ahuatlán, Ayotoxco de Guerrero, Chalchicomula de Sesma, Chignahuapan, Coyomeapan, Cuayuca de Andrade, Cuetzalan del Progreso, Cuyoaco, Elxochitlán, Francisco Z. Mena, Hermenegildo Galeana, Hue- huettlán el Chico, Hueyapan, Hueytamalco, Huizilt-

tepec, Ixtacamaxtíltlan, Izúcar de Matamoros, Jalpan, Jonotla, Jopala, Molclaxac, Olintla, Pahuatlán, Pan-
tepé, San Jerónimo Xayacatlán, San Nicolás de los Ranchos, San Sebastián, Tlacotepec, Tenampulco, Teopantlán, Tepeyahualco, Tlachichuca, Tlacuito-

tepé, Tlahuapan, Tlaola, Tlapanaalá, Tlatlaquitepec, Tlaxco, Totoltepec de Guerrero, Venustiano Ca-
rranza, Xicotepec, Xicotlán, Xoxhitlán Todos Santos, Zacatlán, Zihuateutla y Zoquitlán.

Entre las especies cultivadas están las siguientes: pitaya, *Pinus ayacahuite*, *Pinus patula*, *Cedrela odorata* y *Swietenia macrophylla*. Se invirtió una cantidad de $ 6 231 762.00.

Dentro de la Reserva de la Biosfera Tehuacán-

Cuiatlán también se han llevado a cabo acciones en pro de la reforestación, a través del financiamiento otorgado por PRODERS en el 2008, donde se aplicó un proyecto sobre propagación de plantas nativas y se cultivaron especies como maguey mezc-

calo y cycadas, produciéndose 30 000 plantas en San Luis Atolotiitlán, municipio de Caltepec, donde se invirtieron $79 800.

ORDEMAMIENTO ECOLÓGICO TERRITORIAL

María Antonietta Ixtidó Vázquez y José Carlos Pizana Soto

Desde que el ser humano está en el planeta ha provocado una intensa transformación de la naturaleza en la búsqueda del sustento. Con el tiempo, los efectos antropogénicos en los procesos naturales han llegado a provocar alteraciones (Gobierno del Estado de Puebla 2008).

En un estado que tenga un crecimiento y desarrollo de acuerdo a las necesidades de la población, sin poner en peligro el medio ambiente y los recursos, se crea la necesidad de una ordenación del territorio, entendiéndose por éste: “Un conjunto de acciones concertadas para orientar la transformación, ocupación y utilización de los espacios geográficos, buscando su desarrollo socioeconómico y teniendo en cuenta las necesidades e intereses de la población, las potencialidades del territorio y la armonía con el medio ambiente”.

La biodiversidad en Puebla: estudio de estado
El Ordenamiento Territorial tiene bases legales y técnicas y una visión del desarrollo sustentable, de tal manera que debe visualizar e incorporar la conservación de la biodiversidad y los otros recursos naturales como elementos del desarrollo en todos los sectores de la sociedad (económico, social, etc.).

Es por esto que en México, hasta el 2008, se habían decretado 48 ordenamientos ecológicos, entre los que se encuentran nueve ordenamientos estatales, 12 Municipales y 11 Regionales (Cuadro 8.23).

Actualmente, en el estado de Puebla se está trabajando en la elaboración de programas de ordenamiento ecológico territorial (POET), mismos que se han ido estableciendo en tres niveles: 1) regional, 2) municipal y 3) estatal.

1) Los POET Regionales incluyen Popocatépetl y Zona de Influencia, Centro-Poniente, Mixteca Poblan, Cuenca Nexcaxa-Laxaxalpan y la cuenca Tuxpan. El Programa de Ordenamiento Ecológico Territorial del Volcán Popocatépetl es el único que se ha decretado en el estado (Cuadro 8.24). A continuación se mencionan las características de los Programas de Ordenamiento Ecológico Regional:

Programa de ordenamiento ecológico regional del Popocatépetl y zona de influencia, 2004

- Abarca 19 Municipios
- Superficie 2 206.61 km²

Cuadro 8.23 Ordenamientos Ecológicos decretados hasta el 2008 para la República Mexicana.

<table>
<thead>
<tr>
<th>9 Estatales</th>
<th>12 Municipales</th>
<th>11 Regionales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja California</td>
<td>Mexicali, Baja California</td>
<td>Corredor Costero Tijuana Ensenada</td>
</tr>
<tr>
<td>Jalisco</td>
<td>Los Cabos, Baja California Sur</td>
<td>Zona Costera El Rosario, Sinaloa</td>
</tr>
<tr>
<td>Colima</td>
<td>Villa de Allende, Morelos</td>
<td>Valles Pachuca - Tizayuca, Hidalgo</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>Huaxca, Hidalgo</td>
<td>Tula – Tepeji</td>
</tr>
<tr>
<td>Estado de México</td>
<td>Tepeji, Hidalgo</td>
<td>Cuenca del Río Bobo, Veracruz</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>Candelaria, Chiapas</td>
<td>Sub Cuenca del Río Zanatenco, Oaxaca</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>Benito Juárez, Yucatán</td>
<td>Cuenca del Río Coapa, Chiapas</td>
</tr>
<tr>
<td>Tabasco</td>
<td>Isla Mujeres, Yucatán</td>
<td>Cuencario Tepalcatepec</td>
</tr>
<tr>
<td>Yucatán</td>
<td>Coja, Jalisco</td>
<td>Volcán Popocatépetl</td>
</tr>
<tr>
<td></td>
<td>Rosario, Sonora</td>
<td>Región Laja Bajío Guanajuato</td>
</tr>
<tr>
<td></td>
<td>San Felipe, Sonora</td>
<td>Cuenca Baja del Coatzacoalcos</td>
</tr>
<tr>
<td></td>
<td>Lázaro Cárdenas, Michoacán</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 8.24 Programas de Ordenamiento Ecológico Territorial Regionales del estado de Puebla, realizados a la fecha (SMRN, 2009)

<table>
<thead>
<tr>
<th>Regional</th>
<th>Ordenamiento</th>
<th>Municipios de Puebla</th>
<th>Área Total (km²)</th>
<th>Población de parte de Puebla</th>
<th>Problemática General</th>
<th>Etapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro Poniente</td>
<td>Puebla</td>
<td>Acayote, Amealco, Calpan, Coronango, Cuautlancingo, Juan C. Bonilla, Ocoyucan, Puebla, San Andrés Cholula, San Gregorio Atzompa, San Martín Texmelucan, San Matías Tlaxcalancingo, San Miguel Xoxtla, San Pedro Cholula, Tecali de Herrera, Tepatlaxco de Hidalgo, Tlahuapan</td>
<td>1 806</td>
<td>2 157 564</td>
<td>Evitar problemas urbanos y el deterioro de las condiciones ambientales</td>
<td>En proceso, convenio firmado</td>
</tr>
<tr>
<td>Metropolitan</td>
<td>Puebla, Tlaxcala</td>
<td>Amozoc, Coronango, Juan C. Bonilla, Cuautlancingo, Ocoyucan, Puebla, San Andrés Cholula, San Gregorio Atzompa, San Pedro Cholula, San Miguel Xoxtla</td>
<td>1 377</td>
<td>1 897 302</td>
<td>Evitar crecimiento desordenado</td>
<td>En proceso</td>
</tr>
<tr>
<td>Popocatépetl</td>
<td>Puebla, Morelos, México</td>
<td>Acatepec, Atlixco, Atzitzahuacan, Calpan, Chiautzingo, Choilpec, Domingo Arenas, Huaquechula, Huetzingo, Nealotla, San Jerónimo Tecuanipan, San Nicolás de los Ranchos, San Salvador el Verde, Santa Isabel Cholula</td>
<td>2831</td>
<td>374 559</td>
<td>Riesgo volcánico</td>
<td>Decretado</td>
</tr>
<tr>
<td>Totonaca</td>
<td>Puebla</td>
<td>Acatepec, Acatlan, Atetelpan, Ayotlán de Guerrero, Caxhuanac, Chignahuapan, Cuetzalan del Progreso, Hueyapan, Hueytamalco, Huixtla, Istacaxtlalitlán, Jonurirá, Nautla, San Esteban Cuautepec, Tenampa, Tetela de Ocampo, Teteles de Ávila Camacho, Teziutlán, Tlatlaquitepec, Tuzamapa de Galeana, Xictetelco, Xochiapulco, Xochitlán de Vicente Suárez, Yaonahuac, Zacapoaxtla, Zaragoza, Zautla, Zoquipan</td>
<td>3 695</td>
<td>534 747</td>
<td>Riesgo a los pueblos indígenas</td>
<td>En proceso</td>
</tr>
<tr>
<td>Tuxpan</td>
<td>Hidalgo, Puebla, Veracruz</td>
<td>Francisco Z. Mena, Jalpan, Pahuatlán, Pantepac, Tlacuilotepec, Tlacotalpan, Venustiano Carranza, Honey</td>
<td>13 022</td>
<td>119 816</td>
<td>Prevenir los riesgos por causas geológicas disminuir el impacto por el sector energético</td>
<td>En proceso, convenio firmado</td>
</tr>
</tbody>
</table>
• Representa al 6.51 % del estado
• Población 388 704 habitantes que representa el 7.22 %
• Este POET fue declarado en el 2005 e ingresado en el Registro Público de la Propiedad y del Comercio.
• En el año 2004 fue terminado el Estudio POE de la Región del Popocatépetl por la BUAP.

Programa de ordenamiento ecológico regional
Centro-Poniente, 2007

• Abarca 17 Municipios
• Superficie, 1 771.97 km²
• Representa el 5.22 % del estado
• Beneficia a 2 144 245 habitantes, es decir, el 39.83 % de la población estatal.
• Ordenamiento Ecológico Regional
• Superficie estatal cubierta, 11.73 %

Programa de ordenamiento ecológico regional de la mixteca poblana, 2008

• Abarca 45 Municipios
• Superficie, 8 849 km², que representa el 26 % de la superficie estatal.
• Beneficia a 240 934 habitantes que representan el 4.48 % del total del estado.
• Artículos 5, fracc. V, y 22 de la Ley de Protección al Ambiente Natural y el Desarrollo Sustentable del Estado
• Estudio terminado en este año
• Ordenamiento Ecológico Regional
• Superficie estatal cubierta, 37.82 %
 Estudio realizado por el Colegio de Puebla.

Programa de ordenamiento ecológico regional cuenca Tuxpan (caracterización), 2008

• 8 Municipios de Sierra Norte (Venustiano Carranza, Jalpan, Pantepec, Francisco Z. Mena, Tlaxco, Pahuatlán, Chila, Honey, Pahuatlán y Tlaxco.)
• Superficie, 1 677 km², es decir, el 4.95 % del estado.
• Beneficia a 119 816 habitantes que representa el 2.23 % del total estatal.
• De acuerdo a los Artículos 5 fracciones XXII y XXIV, y 12 de la Ley de Protección al Ambiente Natural y el Desarrollo Sustentable del Estado.
• Ordenamiento Ecológico Regional
• Superficie estatal cubierta, 51.73 %

2) Dentro de los POET Regionales existen programas municipales que son los siguientes municipios (Figura 8.13).

Programas de ordenamiento ecológico municipales, 2007

Tlahuapan.
• Superficie 298.51 km²
Figura 8.13 Programas de ordenamientos ecológicos territoriales regionales de Puebla. (SMRN, 2009)
• Población 33 831 habitantes.
 Chiautzingo.
• Superficie 44.66 km².
• Población 17 167 habitantes.
 Cuautinchan.
• Superficie 136.50 km².
• Población 7 720 habitantes.
 Artículos 5 fracción V, y Artículo 12
 Estos convenios ya fueron firmados, excepto el
de Tlahuapan que está pendiente. Se contó con re-
curso estatal (excepto Cuautinchan) entre el CU-
PREDER y el municipio. Puebla también tiene su
PMOET con recurso municipal (todos realizados por
BUAP - CUPREDER).

Programas de ordenamientos
ecológico municipales
en municipios de
muy alta marginación, 2008

• Comprende 12 municipios en 3 Regiones Socio-
 económicas:
• Valle de Serdán: Chichiquila, Chilchotla y Qui-
 mixtlán.
• Valle de Atlixco: Acteopan, Teopantlán y Tepe-
 maxalco.
• Tehuacán y Sierra Negra: Coyomeapan, Eloxo-
 chitlán, San Antonio Cañada, (S. Sebastián) Tla-
 cotepec de Díaz, Vicente Guerrero y Zoquitlán.
• Superficie 1 805.10 km².
• 149 579 habitantes.
 12 PMOET fueron terminados en este año. Estos
 estudios fueron realizados por el Colegio de Pos-
 tgraduados.

Programas de ordenamientos
ecológico municipales
en cuatro municipios
de muy alta marginación –
nororiental, 2008

• 4 Municipios: Atlequizayan, Huitzilan de Serdán,
 Xochitlán de Vicente Suárez y Zoquiapan
• Superficie 141.62 km².
• 29 140 habitantes
• 4 PMOET 2008 - 2009. Estudio realizado por el
 Colegio de Puebla.

Programa de ordenamiento
ecológico municipal
de Venustiano Carranza, 2008

• Superficie 308.71 km²
• Beneficia a 26 465 habitantes
 PMOET terminado en este año. Estudio realizado
 por el Colegio de Puebla.

Programas de ordenamientos
ecológico municipales
en cinco municipios con localidades
de alta marginación al norte
del estado

• 5 Municipios: Ahuacatlán, Chiconcuautla, Jopala,
 Tlaola y Tepeztinta
• Superficie 609.31 km²
• 67 530 habitantes
 Estos estudios están planificados para 2009.

3) En el 2004 se dio inicio al POET estatal, mismo
que se piensa concluir en el 2009 (Figura 8.14).

Programa de ordenamiento
ecológico territorial del estado
de Puebla, 2008

• Comprende 217 Municipios
• Superficie, 33 919.43 km²
• 5 millones 383 mil 133 habitantes
• En el país 11 estados cuentan con Ordenamiento
 Ecológico Estatal, para este año Puebla se sumará
 a los estados que cuentan con Ordenamiento
 Ecológico de su territorio, hasta el 2008 contó
 con un avance del 55 %.
 De acuerdo a la superficie que abarca el estado,
representa 1.7 % del espacio total del país y se sitúa
en el vigésimo primer lugar en cuanto a extensión.
 Para esta entidad federativa, gran parte de su des-
arrollo se encuentra situado en el altiplano central.
Se distingue por su variada geografía y orografía,
cuenta con 217 municipios y una población que ha
ido aumentando en los últimos años en gran medida,
contando con la misma extensión territorial y los mí-
mos recursos naturales, por lo que fue necesario ini-
ciar una propuesta de Planificación Territorial.
Figura 8.14 Ordenamientos Ecológicos Municipales realizados hasta 2008 en el Estado de Puebla. (SMRN, 2009)
El PEOT se vincula con los tres sectores que interacúan con la población: natural, económico y social.

Este programa surgió a iniciativa de la Secretaría de Desarrollo Social (SEDESOL), la Secretaríapor General del Consejo Nacional de Población (SG-CONAPO) y el Instituto Nacional de Estadística, Geografía e Informática (INEGI), con el fin de diseñar y promover una propuesta interinstitucional de ordenamiento territorial como instrumento para el proceso de desarrollo integral y sustentable en función de un equilibrio distribuido, en el seno de las condiciones ambientales y los asentamientos humanos.

En este sentido, el objetivo interinstitucional se orienta a apoyar a las autoridades estatales (Secretaría de Finanzas y Administración (SFA), Instituto de Catastro del estado de Puebla (ICEP), Secretaría de Desarrollo Económico (SEDECO), Consejo Estatal de Población (COEPO), SEMARNAT y la Secretaría de Desarrollo Urbano y Obras Públicas (SEDURBEO)) para que desarrollen el Programa Estatal de Ordenamiento Territorial (PEOT), mismo que se inició en octubre del 2002 y se concibió como una estrategia de desarrollo socioeconómico que, mediante la adecuada articulación funcional y espacial de las políticas sectoriales, buscó promover patrones sustentables de ocupación y aprovechamiento del territorio.

Para tal fin se diseñaron tres objetivos fundamentales:
1. Prevenir, controlar, corregir y, en su caso, revertir los desequilibrios que se observan en el desarrollo del país.
2. Consolidar aquellas formas de ocupación y aprovechamiento compatibles con las características del territorio.
3. Propiciar patrones de distribución de la población y de las actividades productivas, consistentes con la habitabilidad y potencialidad del territorio.

Estos objetivos buscan la planificación adecuada del uso de la tierra, la distribución espacial equilibrada de los proyectos de inversión, la eficiente organización funcional del territorio y la promoción de actividades productivas, así como los mecanismos eficientes para la provisión de servicios, tanto para contribuir efectivamente al mejoramiento constante de la calidad de vida de la población, como para asegurar la integridad y funcionalidad de los ecosistemas a mediano y largo plazo.

En el proceso de elaboración del PEOT, el gobierno de la entidad desarrolló actividades específicas, agrupadas en las cuatro fases de trabajo: I. Caracterización y análisis de la ocupación del territorio; II. Diagnóstico del sistema territorial. III. Integración del diagnóstico y prospectiva de ocupación. IV. Propuesta de modelo de ocupación.

El estado de Puebla, como se mencionó anteriormente, está conformado por 217 municipios, en los que encontramos gran variedad de paisajes y ecosistemas, debido en gran parte a la fisiografía del territorio y es por esta situación que el presente estudio se basa en las subprovincias Fisiográficas para un análisis regional; por ello, son 9 regiones de estudio las que integran el análisis de diagnóstico (Figura 8.15) y son las siguientes: 1) Carso Huasteco, 2) Llanuras y Lomeríos, 3) Chichonquía, 4) Lagos y Volcanes de Anáhuac, 5) Sierras Centrales de Oaxaca, 6) Sierras Orientales, 7) Sierras y Valles Guerrerenses, 8) Cordillera Costera del Sur y 9) Sur de Puebla.

ACCIONES ESPECÍFICAS DE PROTECCIÓN DE LA BIODIVERSIDAD

José Carlos Pizaña Soto, Cecilia Leticia Hernández Hernández

A pesar de que en el estado de Puebla se encuentran áreas protegidas federales y estatales, es necesario proteger otros tipos de ecosistemas que no se encuentran en las ANPS, por lo que se realizó un taller con expertos de algunas instituciones del estado (SMRN, SDR, BUAP, COLPOS) para proponer sitios que no se encuentran en una protección declarada pero que son susceptibles de conservación con la tendencia a formar una red estatal de áreas protegidas.

Se mostró el mapa de uso de suelo y vegetación del estado (Figura 8.16) lo que sirvió para corroborar los sitios a proponer como áreas protegidas, así
Figura 8.15 Subprovincias fisiográficas del estado de Puebla. (SMRN, 2009)
Figura 8.16 Uso de suelo y vegetación en el estado de Puebla. (INEGI, 2009)
como el mapa de servicios ambientales promovidos en la SMRN para verificar coincidencias en los usos del suelo, así como de las áreas protegidas existentes (Figura 8.17).

Después de verificar la cartografía, se procedió a proponer áreas susceptibles para conservación, que pueden ser promovidas en un futuro cercano. En el cuadro 8.25 se enlistan las áreas susceptibles para conservación en el estado.

De acuerdo a la información obtenida en el taller de expertos, se han detectado áreas a lo largo del estado que pueden ser zonas importantes para la conservación del ecosistema y de especies que no se encuentran representadas en las ANPs, tanto estatales como federales. Es necesario fomentar la certificación de estos sitios para conservación, con las comunidades que poseen la tierra, lo que resulta un trabajo a futuro para las instituciones correspondientes, con muchas expectativas positivas.

Después de analizar las áreas protegidas que se encuentran en el estado, es patente la falta de recursos necesarios para tener un manejo óptimo de ellas, así como del personal, que es una debilidad dentro del sistema de ANPs en toda la república mexicana; sin embargo, si se suman esfuerzos es posible. Aunado a esto, existen los diferentes instrumentos que de manera indirecta funcionan de protección y que se han mencionado a lo largo de este capítulo, ya sea de manera in situ o ex situ, a favor de las especies que son sensibles y pueden ser reintroducidas en su hábitat natural con las debidas acciones.

Una fortaleza con la que se cuenta es la presencia de la SSAOT, dependencia encargada del cuidado del medio ambiente a nivel estatal, así como otras a nivel federal como la CONANP, lo que permitirá hacer las gestiones con las localidades para que se fomente el cuidado de los ecosistemas y así ir fortaleciendo este sistemas de áreas que es fundamental para la conservación de especies de flora y fauna que son tan importantes y representativas en el estado debido a su ubicación dentro del territorio mexicano.

La presencia de jardines botánicos y bancos de germoplasma favorecerán la implementación de estrategias para fortalecer aquellas zonas donde se encuentren especies que sean de relevancia para la conservación; esta labor se suma a la de las instituciones académicas de investigación que con su generación de conocimientos, de manera interdisciplinaria, ayudan a la protección de los ecosistemas.
Figura 8.17 Servicios ambientales en el estado de Puebla promovidos por la SMRN. (INEGI, 2009)
Cuadro 8.25 Áreas propuestas para conservar en el estado de Puebla

<table>
<thead>
<tr>
<th>Ecosistema</th>
<th>Región fisiográfica</th>
<th>ANP</th>
<th>Sitio propuesto/paraje</th>
<th>Ecosistema</th>
<th>Especies relevantes</th>
<th>Tipo de área para conservación</th>
<th>Municipio</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosque templado</td>
<td>Valle de Serdán, Angelópolis, Valle de Atlixco y Matamoros</td>
<td>Pico de Orizaba, Izta-Popo, Malinche</td>
<td>Cerro del Peñón en Chignahuapan en Chinahuitla</td>
<td></td>
<td></td>
<td></td>
<td>Tetela de Ocampo</td>
<td>Chinahuitla como corredor biológico</td>
</tr>
<tr>
<td>Coníferas</td>
<td>Valle de Serdán</td>
<td></td>
<td>Cerro Zoyaltepec</td>
<td></td>
<td></td>
<td></td>
<td>Zoyaltepec</td>
<td>Sierra por carretera al seco</td>
</tr>
<tr>
<td>Coníferas</td>
<td>Valle de Serdán, Angelópolis</td>
<td>Pico de Orizaba, Izta - Popo, Malinche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encinares</td>
<td>Angelópolis</td>
<td>La Calera</td>
<td>Municipal</td>
<td>Puebla</td>
<td></td>
<td></td>
<td></td>
<td>Hay 52 hectáreas con propiedad del ayuntamiento de Puebla</td>
</tr>
<tr>
<td>Encinares</td>
<td>Mixteca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chila de la sal</td>
</tr>
<tr>
<td>Encinares</td>
<td>Valle de Serdán, Angelópolis, Valle de Atlixco y Matamoros</td>
<td>Pico de Orizaba, Izta - Popo, Malinche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesófilo de montaña</td>
<td>Tehuacán - Sierra Negra</td>
<td></td>
<td>Cerro en Sierra Negra</td>
<td></td>
<td></td>
<td></td>
<td>Coyomeapan</td>
<td>Zona entre Alcomunga-Ajalpan y Zoquipan con una altura de más o menos 3000 msnm</td>
</tr>
<tr>
<td>Ecosistema</td>
<td>Región fisiográfica</td>
<td>ANP</td>
<td>Sitio propuesto/paraje</td>
<td>Ecosistema</td>
<td>Especies relevantes</td>
<td>Tipo de área para conservación</td>
<td>Municipio</td>
<td>Observaciones</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>------------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mesófilo de montaña</td>
<td>Sierra norte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zacatlán</td>
</tr>
<tr>
<td>Bosque tropical húmedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Región a decretar como área protegida municipal</td>
</tr>
<tr>
<td>Selva perennifolia</td>
<td>Sierra nororiental</td>
<td></td>
<td>Peñón de Jonotla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selva subperennifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque tropical seco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selva baja caducifolia</td>
<td>Mixteca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chiautla de Tapia</td>
<td></td>
</tr>
<tr>
<td>Matorral xerófito</td>
<td>Valle de Serdán</td>
<td>Cerro Zoyaltepec</td>
<td>Izotales, agaves, palmare</td>
<td>UMAS</td>
<td>Municipal</td>
<td></td>
<td>Zoltepec</td>
<td>La vegetación es rosetófilo con izotes, agaves, palmar</td>
</tr>
<tr>
<td>Matorral xerófito</td>
<td>Tehuacán Sierra Negra</td>
<td>Tehuacán Cuicatlán</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matorral xerófito</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crasicaule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
<table>
<thead>
<tr>
<th>Municipio</th>
<th>Tipo de área para conservación</th>
<th>Ecosistema</th>
<th>Especies relevantes</th>
<th>Sitio propuesto/paraje</th>
<th>ANP</th>
<th>Región foliógrafa</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalchihuites</td>
<td>Altiplano, Altóide</td>
<td>Acuático</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
</tr>
<tr>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
</tr>
<tr>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
</tr>
<tr>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
<td>Acuático, Algaida</td>
</tr>
</tbody>
</table>

Atlas: Hay peces muy raros por haber azúfren en el agua y con temperatura alta, laguna de Tepezihualco, tiene imposibilidad de sumar a la bibliografía. Cerca de 5 a 10 mil ha antes era una salina, en el eco de Tepezihualco, actualmente es zona de parque temático, la bibliografía de red.

Pueden fungir como un área de humedales - RAMSAR |

Hay una cortega |

Laguna Chapulco |

Lagunas naturales |

Valle de Atlixco y Malamorto |

Angelópolis |

Sierita norte |

Presa construida |
LITERATURA CITADA

Comisión Nacional de Áreas Naturales Protegidas. Dirección del Parque Pico de Orizaba, 2009
Diario Oficial de la Federación (DOF). 2002. Decreto de recategorización de el área de protección de recursos naturales Cuenca hidrográfica del río Nexpa. 9 de Septiembre.
Gobierno del Estado de Puebla, SMRN 2008.
INEGI. Tabulados básicos. XII Censo General de Población y Vivienda 2000.
Ley para la Protección del Ambiente Natural y el Desarrollo Sustentable del Estado de Puebla. http://www.congreso-puebla.gob.mx/
Ley General del Equilibrio Ecológico y Protección del Ambiente. 5 de julio 2007.
SMRN (Secretaría de Medio Ambiente; Gobierno del estado de Puebla). 2006. Control de erosión. Base de datos.
SMRN (Secretaría de Medio Ambiente; Gobierno del estado de Puebla). 2008. Erosión de los municipios de Puebla.
SMRN (Secretaría de Medio Ambiente; Gobierno del estado de Puebla). 2009. Áreas naturales protegidas estatales. Base de datos.
http://www.conanp.gob.mx/q_anp.html
http://www.ine.gob.mx/ueajei/publicaciones/libros/360/pue.html
http://www.conabio.gob.mx/conocimiento/regionalizacion/docitos/terrestres.html
http://www.jardinetnobotanico.org/Jardin-Etnobotanico-Education/PlantasValiosas.htm
http://www.ibeep.mx/sitios/herbario/
http://es.wikipedia.org/wiki/Jard%25C3%25ADn_Bot%C3%A1nic_o,_Ignacio_Rodr%C3%ADguez_de_Buendía/BUAP
http://www.conabio.gob.mx/conocimiento/regionalizacion/docitos/Tmapa.html
http://conabio_web.conabio.gob.mx/aicas/doctos/aicas.html
http://www.buap.mx/sitios/herbario/
http://www.mexico.gob.mx/medamb/noticias.jsp? id=17821
Jardín botánico Helia Bravo Hollis, que se localiza en Zapotitlán de las Salinas, (Km 26 de la carretera federal Tehuacán-Huajuapan). Entre las actividades del Jardín se ofrecen al visitante recorridos guiados que permiten conocer la riqueza biológica de la zona. Foto: Stacey Weller.
INTRODUCCIÓN
Diego Cervantes García, Gloria Elvira Rodríguez Gutiérrez

Al igual que en muchas partes de México, en el estado de Puebla cada día son más los convencidos de la necesidad e importancia de sensibilizar, informar, formar y capacitar a la población a través de la educación ambiental. La perseverancia y constancia del trabajo de los educadores ambientales, sin importar su ámbito de acción, ha logrado influir en la construcción de políticas que orientan los planes, programas y acciones de gobierno en materia de educación ambiental; de esta manera, actualmente se cuenta con elementos que dan cuenta de la consolidación de políticas públicas en materia de Educación Ambiental para la Sustentabilidad que van desde el plano internacional hasta el municipal, entre las que destacan: el Decenio de las Naciones Unidas de la Educación para el Desarrollo Sustentable (2005-2014), que se refleja en el Compromiso Nacional por la Década de la Educación para el Desarrollo Sustentable; la Estrategia Nacional de Educación Ambiental para la Sustentabilidad en México y el Plan Estatal de Educación Ambiental del Estado de Puebla.

El trabajo de los educadores ambientales del Estado ha permeado, en diferente grado, a varios grupos de la población, contribuyendo en la formación de una nueva cultura ambiental.

Con el fin de ofrecer mayores elementos de análisis que permitieran proponer y desarrollar una estrategia que desde la educación ambiental fortalezca la tarea de conservación, manejo y aprovechamiento sustentable de la biodiversidad, se consideró necesario desarrollar el tema desde los siguientes ámbitos: educación ambiental formal, educación ambiental no formal y comunicación educativa, respondiendo a preguntas clave como ¿Qué se ha hecho?, ¿Qué se tiene? y ¿Qué se propone? Se espera que la respuesta a estas preguntas permita asumir responsabilidades, programar tareas, dar seguimiento y evaluar el impacto de las acciones en los diferentes niveles de gobierno, instituciones de educación superior, organizaciones de la sociedad civil, centros de recreación y cultura ambiental, institutos y colegios de profesionistas, a través de la Estrategia de Conservación y Uso Sustentables de la Biodiversidad de Puebla.

MARCO JURÍDICO DE LA EDUCACIÓN AMBIENTAL EN EL ESTADO DE PUEBLA
Juan Alejandro Ruiz Meza, Diego Cervantes García, Gloria Elvira Rodríguez Gutiérrez

El marco jurídico que promueve la formación de una cultura ambiental a través de la educación especializada en la sociedad, parte de la Constitución Política de los Estados Unidos Mexicanos y permea diferentes leyes y reglamentos hasta concretarse en los planes, estrategias y programas institucionales y sociales.

La Ley de Educación del Estado de Puebla se refiere a la educación ambiental en los artículos 8, 53 y 55. Entre los objetivos relacionados con este tema se pueden mencionar los siguientes: promover en los programas educativos de los diversos niveles, tipos y modalidades de educación la incorporación de contenidos teórico-prácticos ecológicos y ambientales, acciones de conservación del medio ambiente, manejo racional de los recursos naturales y el desarrollo sustentable, que respondan fundamentalmente a las condiciones ambientales del estado, procurando la permanente instrucción y actualización del magisterio en estas materias.
La Ley para la Protección del Ambiente Natural y el Desarrollo Sustentable del Estado de Puebla establece que es competencia de la secretaría encargada de la protección del ambiente la conducción de la política estatal, dar información y difusión en materia ambiental y promover la participación de la sociedad. Según esta Ley, las autoridades e instituciones educativas deben interactuar con el fin de formar valores y actitudes mediante un proceso de aprendizaje en el que el individuo interacúe con la naturaleza.

A nivel municipal se puede citar el artículo 1 744, fracción II del Código Reglamentario del Municipio de Puebla (COREMUN).

No obstante, estas leyes no han sido suficientes para estandarizar, regular y normar tareas, acciones, proyectos y programas en este campo. Es evidente la necesidad de un instrumento normativo que llene los vacíos de la legislación estatal vigente en materia de educación y cultura ambiental. Con base en lo anterior, desde el 2006 se han realizado diversos esfuerzos para la conformación de un marco normativo específico en materia de educación ambiental a través de los foros de consulta pública para la conformación de la Ley Estatal de Educación Ambiental, sin lograr su concreción. Sin embargo, el planteamiento de crear un instrumento normativo permanece vigente.

EDUCACIÓN FORMAL

Antonio Fernández Crispín, Norma A. Hernández-C,
Karina Luna Temaria, Verónica Ruiz Pérez, Marisela de Niz Robles,
Yadira Hernández Corona, David Lara González, Erik Joaquín Torres Romero, Julio Cesar Gallardo Vásquez, José Edmundo Rivera Herrera

La construcción de una cultura ambiental mediante la educación formal en Puebla

Desde 1994, un equipo de investigadores de la Benemérita Universidad Autónoma de Puebla, encabezados por Antonio Fernández Crispín y Javier Guevara Martínez, han evaluando la situación de la Educación Ambiental en el estado. A continuación se presenta una semblanza de los resultados más importantes de las investigaciones realizadas por este grupo de investigación:

Los dibujos con el tema “la escuela” son primordialmente referentes a elementos construidos, decorativos y recreativos. Las personas y los animales quedan representados mínimamente. La percepción de la escuela por los niños se manifiesta de manera impersonal y alejada de su vida familiar. Son ambientes separados, unidos únicamente por elementos complementarios de la naturaleza, generalmente aquellos que se utilizan para enmarcar el dibujo y que definen lo que está arriba (cielo, nubes, sol y ocasionalmente arcoíris) y lo que está abajo (pasto, flores, caminos, tierra). El tema de “localidad” muestra dinamismo y una actividad humana constante en elementos construidos y de trabajo. También se muestra más lejanía y desinterés en el cuidado del entorno.

En los dibujos cuyo tema fue “el agua” se observó como ajena al ambiente próximo del niño y preferentemente como un elemento de diversión, mientras que en el tema de “la naturaleza” se observó como algo que existe pero no cerca de ellos (Ruiz y Fernández-Crispin 2008).

Guevara y Fernández-Crispin (1994) realizaron en el municipio de Puebla un proyecto para evaluar el nivel de conocimientos y actitudes ambientales de los niños de primaria. En términos generales, en 1994 se encontró que el conocimiento ambiental de los niños era muy deficiente mientras que la actitud era ligeramente positiva. Sin embargo, había una actitud negativa en lo que se refiere a cuestiones más de fondo, como cuando se cuestiona el modelo de civilización prevaleciente (consumismo, preferencia de ambientes construidos y desprecio por las culturas indígenas) (Fernández-Crispin et al. 2005). En 2006 se realizó una réplica de esta investigación con el objetivo de comparar el grado de avance de los niños en los últimos años. Para 2006 se presenta un ligero avance en conocimientos (4.81 puntos en una escala de 0 a 10 contra 4.61 en 1994); no obstante, los niños siguen reprobados. En lo que se refiere a actitudes, se encontró un avance importante en lo que respecta a tomar acciones proambientales,
en la evaluación que hacen los niños de costos (ambientales) contra beneficio (personal) y en lo que se refiere al factor estatus-comodidad (Luna 2008; Fernández-Crispin et al. 2009).

La reflexión concluyente de esta investigación es que los educadores ambientales están formando una ciudadanía cargada de emociones pero carente de conocimientos ambientales. Por lo tanto, se recomienda a los educadores ambientales preocuparse más por el desarrollo del pensamiento crítico ambiental (Fernández-Crispin 2009).

Fernández-Crispin (2002) analiza las creencias de los maestros de primaria sobre el medio ambiente y la educación. Concluye que, en términos generales, tanto los niños como los maestros manifiestan una preocupación general por los problemas ambientales. Sin embargo, esta preocupación está fundamentada en muy poca información. Los maestros y los niños han construido un “lenguaje temático” sobre conceptos como el de contaminación y deforestación, que les permite hablar superficialmente del problema, sin cuestionarse la manera de ver, transformar e instalarse en el mundo. Su visión al respecto es básicamente moderna, en el sentido que plantea Latour (1997), de manera que conciben al factor humano separado de la naturaleza. Sin embargo, los maestros tienen algunos valores de la civilización mesoamericana positivos para establecer relaciones armónicas con el entorno (Fernández-Crispin et al. 2005).

A partir de estas conclusiones y apoyados en la propuesta de Pérez (1999), se planteó la hipótesis de que la cultura ambiental se construye alrededor de al menos cinco fuentes culturales: crítica, académica,
social, institucional y experiencial. Esta idea sirvió para proponer el modelo educativo que es la base del Plan Estatal de Educación Ambiental de Puebla (Fernández-Crispín et al. 2006). En este plan, la problemática ambiental se aborda desde estos cinco aspectos de la cultura.

Con objeto de conocer cuál es el proceso de construcción de los modelos de desarrollo y cómo se apropian de ellos los estudiantes universitarios de la Benemérita Universidad Autónoma de Puebla (BUAP), Lara (en proceso) encontró que la representación del modelo de desarrollo que tienen los alumnos pasa por tres etapas: en la primera se concibe al desarrollo como crecimiento cuantitativo, el cual es básicamente económico y tecnológico; lo importante es el individuo y predominan valores como el de la competencia. Otro aspecto fundamental de esta etapa es la concepción del hombre como algo separado de la naturaleza y una opción clara por el primero. En la segunda etapa se percibe que el modelo de civilización preponderante ha puesto en riesgo a la naturaleza; se sigue concibiendo al hombre separado de la naturaleza y se opta por el elemento que se considera débil, que generalmente es la naturaleza, además de que se trata de resolver los problemas en función de los elementos con que cuenta la modernidad (más ciencia y tecnología, leyes más rigurosas, más recursos económicos, incentivos fiscales, etc.). Finalmente, en un tercer estadio aparece la propuesta del desarrollo sustentable, en el que el ser humano ya no es un elemento ajeno a la naturaleza y se proponen cambios radicales en la estructura social.

Estas tres etapas están muy relacionadas con el nivel de desarrollo del juicio moral (Kohlberg 1998) de los estudiantes, de modo que para poder entender las propuestas de cada uno de estos modelos de desarrollo, deben poder pasar de un juicio moral preconvencional a uno convencional finalmente a uno postconvencional (Lara y Fernández-Crispín 2007).

En términos generales no se observaron cambios importantes entre los alumnos de reciente ingreso y los que están cercanos a egresar, lo que hace suponer que existen fuentes más importantes en la formación del concepto de desarrollo que tienen los universitarios.

Conocimiento de la biodiversidad

Ruiz (2008) realizó un estudio de los animales y las plantas que dibujan los niños. Los temas de los dibujos fueron el agua y la naturaleza.

En los dibujos sobre el agua se representan 23 animales. Destacan los peces en general, las ballenas, los tiburones y pulpos, además de otros animales acuáticos. En los dibujos sobre la naturaleza, la diversidad de animales representados se incrementa con un total de 60 animales. Los más importantes son la mariposa, las aves (de especies no definidas), el oso, la serpiente, el perro, el gato, el tigre, la jirafa, el elefante, la abeja y el caracol. La mayoría de las especies representadas son nativas de México (64%); Le siguen las especies domésticas (20%) y las exóticas (15%); el resto son animales prehistóricos. Por lo que se refiere a las plantas, la diversidad es menor, pues se identificaron 10 categorías diferentes de especies vegetales. Los niños dibujan árboles y flores indefinidas. La especie bien definida que más se representa es el pasto, aunque también dibujan manzanos, pinos, palmeras, rosas, violetas y naranjas.

Hernández-C. et al. (2009) analizaron las ilustraciones de animales de los libros de texto gratuitos de sexto de primaria. Encontraron que hay 820 ilustraciones; la mayoría son caricaturas (497); le siguen 133 fotografías, 66 jeroglíficos, 62 dibujos realistas, 34 escudos, 17 representaciones de esculturas y 11 escudos de monedas. Hasta el momento han identificado los animales de 599 ilustraciones. En muchas de ellas los animales son irreales o simplemente representan a un grupo general, por ejemplo un pez que no corresponde a ninguna especie existente. La mayoría de las ilustraciones son de animales silvestres exóticos. Dentro de los animales domésticos, los más frecuentes son los de trabajo (caballo) y los alimenticios. Es importante el número de ilustraciones de animales prehistóricos (85).

En la investigación realizada por Guevara y Fernández-Crispín (1994) se pidió a los niños que identificaran cinco ilustraciones de vertebrados comunes en los alrededores de la ciudad de Puebla y que se encontraran ilustradas en los libros de texto y fueron las siguientes: armadillo, cacomixtle, correcaminos, colibrí y camaleón cornudo. En el Estudio de Caso 9.1 se presentan los resultados del análisis sobre el
porcentaje de los 4 595 niños encuestados que logró identificar a estos animales.

Entre 2002 y 2003, Hernández–C. et al. (2009) realizaron una encuesta a 1 234 niños de sexto de primaria en la ciudad de Puebla. El objetivo era investigar sobre los animales silvestres conocidos por los niños. Encontraron un total de 317 especies conocidas, donde algunas de las más mencionadas fueron: el león, el perro, el tigre, el gato, el ave/pájaro, la víbora, la pantera/leopardo, la serpiente, el tiburón y el oso. Cabe señalar que aunque se les pedía mencionar animales silvestres, nombraron algunos animales domésticos, básicamente mascotas. De las 232 especies silvestres que mencionaron, 160 fueron nativas de México, aunque los animales más mencionados fueron exóticos (león, tigre, pantera).

En una encuesta realizada por Torres y Fernández-Crispin (2003) para evaluar el conocimiento de la fauna en 176 niños de sexto grado de primaria de la Mixteca Poblana, se obtuvo una lista de 124 especies. La diferencia fundamental con los niños de la ciudad de Puebla es que aquí se incluyen otra serie de animales domésticos que son importantes en la región, como el burro, la vaca, el cerdo, el chivo, el borrego y el caballo. Como animales silvestres de la región destacan el venado, el conejo, la paloma, la tortuga, la víbora, la ardilla, la iguana y el coyote.

El trabajo de Torres y Fernández-Crispin (2003) incluye también a 482 estudiantes de secundaria. En este nivel mencionaron a 114 especies, donde las importantes son prácticamente las mismas que las que se señalan en primaria.

Gallardo (2008) realizó un estudio sobre el conocimiento de las plantas en adolescentes de una escuela de la ciudad de Puebla y mencionaron un total de 76 especies de plantas. Las más comunes son las siguientes: manzanilla, rosa, girasol, marga-rita, nochebuenas, bugambilia, tulipán, cactus, alga, sábila, hierba buena, epazote, cilantro, espinaca, limón y maíz. La mayoría de las plantas mencionadas son de jardín o se compran en el mercado, pero muy pocas son plantas silvestres. La mayoría de las especies mencionadas son mexicanas.

Rivera (2009) realizó una investigación en la Mixteca Poblana con el fin de identificar los animales que conoce la gente y los usos que se les da. En un cuestionario aplicado a 100 personas se identificó un total de 99 animales. Se mencionan 12 especies de peces, entre los que destacan la mojarra (Cichlasoma ictalurus), el bagre (Ictalurus balsanus), la poteta (varias especies de poecilidos) y el blanquillo (Astyanax aeneus). Todos los anfibios se consideran ranas o sapos. Nombran 18 especies de reptiles de las cuales las más importantes son: la iguana (Ctenosaura pectinata), la cascabel (Crotalus simus y C. culminatus), el túcule (Drymarchon melanos), el coralillo (Micrurus laticollaris), la cujía (Salvadora mexicana), el camaleón (Phrynosoma blanquillo) y el chintete (Sceloporus sp.). El grupo del que se conocen más especies son las aves con 43, de las que destacan: la chachalaca (Ortalis vetula), la codorniz (Colinus virginianus y Philopteryx fasciatus), la paloma (Zenaida asiatica y Z. macroura), el zopilote (Coragyps atratus), la calandria (Icterus sp.), el gallo, la golondrina (Hirundo rustica) y el águila. También mencionaron al correcaminos (Geococcyx velox) y al colibrí. Respecto a los mamíferos, se mencionaron 24. Los más importantes son el venado (Odocoileus virginianus), el conejo (Sylvilagus floridanus), el tejón (Nasua narica), el coyote (Canis latrans), el lla-cuache (Didelphis virginianus), el mapache (Procyon lotor), la zorra (Urocyon cinereoargenteus), el zorro (Mephitis macroura y Conepatus mesoleucus), la ardilla (Spermophilus mexicanus), la liebre (Lepus callos), el gato montés (Lynx rufus), el cacomixtle (Bassariscus astutus) y el jabalí (Tayassu tajacu), además de las especies domésticas como el burro y la vaca, entre otras.

Acciones que se están tomando en la educación ambiental

En lo que respecta a los distintos niveles de la educación formal, es necesario comentar los avances logrados con la Secretaría de Educación Pública (SEP) al establecerse propuestas concretas que contribuyen a los logros establecidos en el Compromiso Nacional de la Educación Ambiental para la Sustentabilidad. Un ejemplo de esto es el Diplomado de Formación de Educadores Ambientales, acorde al Decenio de la Educación Ambiental. Esta acción se logró a través de un esquema
de coparticipación entre la Delegación de la SEMARNAT en el estado, la SEP (a través de la Coordinación Estatal de Formación Continua), la Universidad Iberoamericana Puebla y Villa Atl A. C. Se han graduado 138 estudiantes en dos generaciones.

Asimismo, en el rubro de formación y profesionalización de los educadores ambientales se han organizado y realizado reuniones, cursos y talleres para la formación de profesores como educadores ambientales, con el apoyo de la Escuela de Biología de la BUAP. El propósito de estos eventos es dotar de elementos teóricos y metodológicos a los participantes para que logren elaborar y desarrollar sus programas ambientales en las escuelas, con apoyo de profesores, alumnos y padres de familia.

Un asunto estratégico de atención en la política ambiental del país es el cumplimiento de lo establecido en el Compromiso Nacional por el Decenio de la Educación para el Desarrollo Sustentable. Para ello, la SEMARNAT y la SEP han establecido un amplio programa de colaboración con acciones concretas como es el caso de distribuir en el país cerca de dos millones de ejemplares del libro “¿Y el Medio Ambiente qué?, problemas ambientales en México y el Mundo”. Para el estado de Puebla se han destinado más de 54 000 ejemplares. El propósito es que todos los profesores frente a los grupos de las escuelas públicas cuenten con esta herramienta educativa para apoyar las tareas que les marcan los programas educativos de cada uno de los niveles.

La distribución de estos libros va acompañada de un proceso de inducción, sensibilización y capacitación a través del taller “Problemas Ambientales de México y el Mundo: herramientas para su tratamiento desde la escuela”, que dura 20 horas y tiene un carácter vivencial. En el estado de Puebla se ha capacitado al personal de los 30 centros de maestros con el fin de lograr su réplica en las diferentes regiones del estado.

A este proceso se ha sumado la Dirección General de Formación y Desarrollo de Docentes de la SEP, logrando involucrar a los profesores de las escuelas de educación normal de sostenimiento público. Los asistentes al taller adquieren el compromiso de realizar la réplica a todos los profesores de sus respectivas instituciones. También se ha programado un taller específico para escuelas particulares de educación normal.

Esta iniciativa ha desencadenado propuestas para desarrollar el tema desde niveles como la Dirección de Actualización, Capacitación y Superación Profesional a través de un Programa de Proyectos Institucionales para la Sustentabilidad en los 13 institutos tecnológicos superiores en el estado de Puebla, así como en las cinco universidades tecnológicas.

De la misma forma, esta iniciativa ha despertado el interés de la Dirección General de Educación Tecnológica Agropecuaria (DGTA) y se está trabajando para que sea asumida por la Dirección General de Educación Tecnológica Industrial (DGETI).

EDUCACIÓN NO FORMAL

Gloria Elvira Rodríguez Gutiérrez, Luis Enrique Martínez Romero, Elizabeth Adriana Flores Jiménez, Beatriz Beristain Noriega, Gisselle Constanza Zamorano Martínez, Juan Alejandro Ruiz Meza, Diego Cervantes García

Desde hace varias décadas los educadores ambientales del estado de Puebla han empleado diversas estrategias de educación no formal para desarrollar actividades orientadas a la creación de una cultura ambientalmente sustentable.

En el caso de los centros de recreación y de cultura ambiental (CRCA), las instituciones públicas y las organizaciones civiles u organizaciones no gubernamentales (ONGs) implementan una amplia gama de actividades, muchas de ellas apoyadas en elementos lúdicos y material didáctico que facilita la comprensión de la problemática ambiental, sensibilizando y motivando la participación de niños, jóvenes y adultos en la protección y conservación del ambiente.

Hablando de Biodiversidad, durante el “Foro de Consulta y Diseño del Plan Estatal de Educación Ambiental, Capacitación para el Desarrollo Sustentable y Comunicación Educativa del Estado de Puebla” organizado por la SEMARNAT en 2003, los educadores ambientales del estado identificaron una serie de problemas que están directamente relacionados con el tema y es en torno a ellos que se han diseñado y organizado algunos programas; contando actualmente con una serie de actividades dirigidas a un público muy diverso en edad, formación e intereses, contribuyendo directamente a sensibilizar, informar y reflexionar sobre el tema.
Considerando lo anterior, se identificaron las instituciones y organizaciones que tienen programas de educación ambiental que fomenta el uso racional, la protección y la conservación de la Biodiversidad. Para su descripción, en este apartado se han clasificado en organizaciones civiles, centros recreativos y de cultura ambiental, áreas naturales protegidas e instituciones de gobierno.

En el primer caso, las organizaciones civiles han tenido una participación destacada a partir de la década de los 80. Han rescatado espacios físicos como el Parque Ecológico Revolución Mexicana, el Aviario de Puebla, la Laguna de San Baltazar y el Ojo de Agua de Texmelucan Verde, entre otros. Han participado en la consolidación de tres espacios de expresión y participación ciudadana, como son: el Consejo Ciudadano de Ecología, el Consejo Estatal de Ecología y el Consejo Consultivo para el Desarrollo Sustentable, nucleo Puebla. Sus principales aportaciones han sido a través de la denuncia ciudadana, colaboración en la elaboración de la legislación ambiental, además de asesorar o revisar proyectos a nivel estatal y municipal.

En cuanto a educación ambiental, las ONGs han contribuido a su reconocimiento con demandas, como un elemento estratégico de los planes y programas institucionales, participando en la consolidación de políticas públicas que se reflejan en la Ley General de Protección al Ambiente Natural y Desarrollo Sustentable del estado de Puebla, la Estrategia Nacional de Educación Ambiental para la Sustentabilidad en México y el Plan Estatal de Educación Ambiental de Puebla.

El estado de Puebla actualmente cuenta con 45 ONGs (Apéndice 1) de las cuales 15 son asociaciones juveniles (actores que se suman al movimiento ambientalista poblano a partir de octubre de 2005). Sus esfuerzos se encaminan a la concientización sobre los problemas ambientales en general, pero pocas tienen programas educativos relacionados con la Biodiversidad (Figura 9.2). En el Cuadro 9.1 se hace un resumen de las características de ocho ONG que tiene
Cuadro 9.1 Características de las organizaciones no gubernamentales que desarrollan actividades sobre el tema

<table>
<thead>
<tr>
<th>Organización</th>
<th>Cobertura</th>
<th>Actividades principales</th>
<th>Programas exitosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativas y Procesos de Participación Social A.C</td>
<td>Regional</td>
<td>Impulsar procesos de participación social orientados hacia el desarrollo humano y regional sostenible.</td>
<td>Agua para Siempre. Producción de alimentos sustentables como el amaranto a través de la Cooperativa Quali. Museo del Agua.</td>
</tr>
<tr>
<td>Huitzilcóatl, A.C.</td>
<td>Estatal</td>
<td>Impulsar procesos de participación social en el aprovechamiento sustentable de los recursos bióticos del estado, fomentar una cultura de respeto al ambiente, investigación, capacitación para la creación de Unidades de Manejo y Aprovechamiento Sustentable.</td>
<td>Elaboración de guías de aves. Aviario de Puebla.</td>
</tr>
<tr>
<td>La Casa de las Hormigas</td>
<td>Regional</td>
<td>Conservación y cuidado de los recursos naturales por medio de las diferentes estrategias cognitivas que abarca la Educación Ambiental.</td>
<td>Senderismo. Talleres interactivos.</td>
</tr>
<tr>
<td>Némesis Asesores Ambientales S.C.</td>
<td>Estatal</td>
<td>Inventarios florísticos y faunísticos, educación ambiental, capacitación, saneamiento básico, salud ocupacional, seguridad industrial, vinculación y transferencia de tecnologías en materia de bioremediación de suelos contaminados con hidrocarburos.</td>
<td>Capacitación para grupos de base</td>
</tr>
<tr>
<td>Manos a la Ciencia A.C.</td>
<td>Regional</td>
<td>Inculcar en los niños el interés por las ciencias.</td>
<td>Talleres de biología, ciencias de la tierra, educación ambiental, física y química. Asesoría en proyectos de ciencias para niños.</td>
</tr>
<tr>
<td>Mazamiztli, A.C.</td>
<td>Estatal</td>
<td>Promover la conservación, manejo y aprovechamiento sostenible de los recursos naturales a través de la educación, la investigación y la transferencia de tecnología.</td>
<td>Capacitación para grupos de base y cazadores.</td>
</tr>
<tr>
<td>Tosepan Titataniski</td>
<td>Regional</td>
<td>Mejorar la calidad de vida de todos los socios a través de acciones que permitan alcanzar el desarrollo sustentable de su familia.</td>
<td>Producción de café, pimienta y miel virgen; el Centro de Formación “Kaltaixpetaniloya”; desarrollo de la mujer; turismo alternativo; microfinanciamiento, mejoramiento de la vivienda y Educación ambiental.</td>
</tr>
</tbody>
</table>
programas de educación ambiental vinculados al conocimiento o aprovechamiento de la Biodiversidad. Las aportaciones de las asociaciones juveniles se pueden apreciar en el Estudio de Caso 9.3.

Los Centros de recreación y cultura ambiental del estado de Puebla incluyen jardines botánicos, zoológicos y áreas naturales protegidas; muchos de ellos han desarrollado diversos programas y actividades con el objetivo de promover la formación de competencias, valores y aptitudes relacionadas con la construcción de una cultura para el aprovechamiento sustentable de los recursos naturales, propiciar la participación social en acciones de preservación, cuidado y atención de problemas ambientales y difundir tecnologías alternativas aplicadas al aprovechamiento racional y conservación de los recursos (Maldonado 2003). En el Cuadro 9.2 se pueden apreciar algunas experiencias exitosas de estos centros.

Otros espacios que se han destacado por su participación en la recreación, conservación, investigación y educación ambiental sobre biodiversidad y que no se incluyen en la tabla son: el Jardín Botánico “Helia Hollis” de Zapotitlan Salinas, el Jardín Botánico “Ignacio Rodríguez Alconedo”, el Herbario de la BUAP, el zoológico Africam Safari y el Museo del Agua en Tehuacán.

Si bien las áreas naturales protegidas son centros de recreación y cultura ambiental, merecen mención aparte por su relevancia en los programas de conservación, investigación y educación. Las áreas

Cuadro 9.2 Características de los centros de recreación y cultura ambiental

<table>
<thead>
<tr>
<th>CRCA</th>
<th>Cobertura</th>
<th>Actividades</th>
<th>Programas exitosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviario de Puebla</td>
<td>Nacional</td>
<td>Investigación, Conservación</td>
<td>Talleres y cursos para niños y adolescentes, con los temas “El Mundo de las Aves” y “Biodiversidad”; Reproducción de 52 especies de aves mexicanas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Educación, Recreación</td>
<td></td>
</tr>
<tr>
<td>Zoo Parque Loro</td>
<td>Regional</td>
<td>Conservación, Educación,</td>
<td>Programas de contacto y conocimiento de la mayoría de las especies del zoológico.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recreación</td>
<td></td>
</tr>
<tr>
<td>Jardín Etnobotánico “Francisco Peláez”</td>
<td>Internacional</td>
<td>Investigación, Conservación, Educación, Recreación</td>
<td>Talleres y visitas guiadas en las instalaciones del jardín.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jardín Botánico “Louisa Wardle de Camacho”</td>
<td>Internacional</td>
<td>Investigación, Conservación, Educación, Recreación</td>
<td>Talleres sobre taxonomía vegetal, insecticidas naturales, plantas aromáticas y jardinería; visitas guiadas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jardín Botánico Xoxoc tic</td>
<td>Regional</td>
<td>Conservación, Educación,</td>
<td>Taller temático sobre café y senderos interpretativos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recreación</td>
<td></td>
</tr>
<tr>
<td>Villa Atl</td>
<td>Regional</td>
<td>Educación, Recreación</td>
<td>Capacitación para profesores. Conmemoraciones ambientales.</td>
</tr>
</tbody>
</table>
que actualmente cuentan con programas de educación ambiental significativos por su constancia y la sistematización de sus actividades son el Parque Estatal General Lázaro Cárdenas Flor del Bosque (Figura 9.3), la Reserva de la Biosfera Tehuacán–Cuicatlán (RBTC) y el Parque Nacional Ixta-Popo (Cuadro 9.3). En los casos del Parque Nacional Pico de Orizaba, el Parque Nacional la Malinche y Neçaxa, su trabajo en materia de educación ambiental ha sido intermitente por factores como falta de personal, presupuesto y carga de trabajo.

Cabe señalar que la participación de los medios masivos de comunicación de manera activa en la formación y toma de conciencia de la ciudadanía en materia de conservación y protección al ambiente es vital. Son ellos quienes, a través de su labor, tienen la oportunidad de llegar a un público diverso y numeroso, con necesidades de información objetiva en materia de aprovechamiento de recursos, gestión, legislación ambiental, trámites, responsabilidades y cultura general. Sin embargo, hasta la fecha pocos se han comprometido con esta labor, como se puede apreciar en la Cuadro 9.4 y en los estudios de caso 9.4 y 9.5.

De hecho, en el Plan Estatal de Educación Ambiental de Puebla se reconoce la necesidad de una mayor participación de los medios de comunicación y comunicólogos, con espacios y temas ambientales especializados. El fin es ofrecer información veraz y oportuna a la sociedad y contribuir de esta manera a la formación de un criterio más amplio sobre la situación ambiental del estado. Esto no es tarea
Cuadro 9.3 Características de las Áreas Naturales Protegidas

<table>
<thead>
<tr>
<th>ANP</th>
<th>Cobertura</th>
<th>Actividades principales</th>
<th>Programas exitosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parque Estatal “General Lázaro Cárdenas Flor del Bosque”</td>
<td>Puebla</td>
<td>Vincular la educación ambiental con la protección del medio ambiente. Desarrollar el parque como modelo de preservación y conservación de los bosques y la vida silvestre.</td>
<td>Recorridos guiados por las instalaciones del parque.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Centro de educación y vigilancia climática global “Sir Crispín Tickell” Reproducción y comercialización de aves y mamíferos.</td>
</tr>
<tr>
<td>Reserva de la Biosfera Tehuacán-Cuicatlán</td>
<td>Puebla-Oaxaca</td>
<td>Protección de recursos naturales (prevención y combate de incendios forestales, promoción de comités de vigilancia ambiental participativa, así como control de plagas y enfermedades forestales, entre otros)</td>
<td>“Programa de Educación Ambiental” en coordinación con la SEP-CORDE-10 Tehuacán, e investigación educativa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manejo de recursos naturales de zonas semíridas, con acciones tales como turismo de naturaleza y artesanías.</td>
<td>Conmemoraciones ambientales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cultura para la conservación y comunicación, con diversos programas de educación ambiental y difusión.</td>
<td>Campaña de conservación del agua a través del orgullo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conocimiento, promoviendo y apoyando la investigación en el área protegida.</td>
<td>Protección de la guacamaya verde (Ara militaris).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Programa de radio “Explorando el Valle” con el apoyo de SICOM Radio Tehuacán.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Programa de Conservación para el Desarrollo Sostenible (PROCODES).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Proyectos de educación ambiental.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capacitación en estufas ahoradoras de leña, viveros forestales, ecoturismo y conservación de suelos.</td>
</tr>
</tbody>
</table>

Cuadro 9.4 Medios de Comunicación

<table>
<thead>
<tr>
<th>Tipo de Medio</th>
<th>Medio de Comunicación</th>
<th>Sección o Programa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impresos</td>
<td>Síntesis**</td>
<td>Tierra baldía y Nueva Tierra Baldía</td>
</tr>
<tr>
<td></td>
<td>El Sol de Puebla</td>
<td>Medio Ambiente</td>
</tr>
<tr>
<td>Radio</td>
<td>Radio Tribuna</td>
<td>El Cuchitril</td>
</tr>
<tr>
<td></td>
<td>Radio BUAP*</td>
<td>Tras las huellas de la naturaleza.</td>
</tr>
<tr>
<td></td>
<td>SICOM Radio</td>
<td>Ángeles Patrulleros</td>
</tr>
<tr>
<td>Internet</td>
<td>http://www.hamberadio.com</td>
<td>Susten-Table</td>
</tr>
<tr>
<td></td>
<td>http://www.semarnat.gob.mx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://www.smrn.pue.gob.mx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://www.pueblacapital.gob.mx</td>
<td></td>
</tr>
</tbody>
</table>

* Ver Estudio de Caso 9.4 ** Ver Estudio de Caso 9.5
fácil, pues en lugar de proyectos temporales o aislados, se necesita de la organización y coordinación de diferentes actores, como investigadores, educadores y autoridades, para que los medios de comunicación apoyen los diversos programas que tiene el estado en materia de educación ambiental.

Las instituciones gubernamentales han evolucionado a través del tiempo, asumiendo nuevas responsabilidades y diversificando las actividades en materia de educación ambiental. Así, tanto a nivel federal como estatal, se cuenta con una área de educación ambiental. El caso de los gobiernos municipales es más complejo y no todos cuentan con un departamento semejante.

A continuación se mencionan las actividades que realizan los tres niveles de gobierno en materia de educación ambiental, con la visión de contribuir al desarrollo y planteamiento de la Estrategia Estatal de Biodiversidad.

La Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Delegación Puebla, formula un Programa Anual de Educación Ambiental para la Sustentabilidad, con el objetivo de integrar y desarrollar el Programa de Educación Ambiental y Capacitación para el Desarrollo Sustentable de la Delegación, mediante la detección de necesidades en la materia. El contenido del Programa establece líneas y acciones específicas para contribuir en la conservación, manejo y aprovechamiento sustentable de la Biodiversidad de nuestro estado y país por medio de los siguientes puntos: educación ambiental, capacitación para el desarrollo sustentable, comunicación educativa, proyectos estratégicos, coordinación interinstitucional y servicios de la delegación (atención a usuarios), así como la distribución de material didáctico sobre diversos temas.

En este proceso resultó determinante la propuesta de la SEMARNAT para la unificación de los criterios establecidos en la Estrategia de Educación Ambiental para la Sustentabilidad en México.

La Dirección de Cultura Ambiental de la Secretaría de Sustentabilidad Ambiental y Ordenamiento Territorial (SSAOT) tiene como objetivo promover la participación activa y consciente de la población a través de procesos de comunicación y educación ambiental para la conservación, preservación y aprovechamiento sustentable de los recursos naturales. Sus esfuerzos se han centrado en siete programas estratégicos: Programas Municipales de Educación Ambiental, Programa de Formación de Promotores Ambientales, Programa Integral de Medio Ambiente en Vinculación con la SEP, Programa Interinstitucional de Medio Ambiente, Programa para el Manejo Integral de Residuos Sólidos, Programa de Capacitación en Gestión Ambiental para Autoridades Municipales y Programa de Concientización.

En lo que respecta a la Educación Ambiental no Formal, la Secretaría de Educación Pública a través de la Coordinación Estatal de Desarrollo Educativo (CORDE), propuso el Programa Integral de Educación Ambiental en el cual se establecen lineamientos para acceder a estas propuestas educativas de centros de recreación y cultura ambiental, organizaciones de la sociedad civil e instituciones gubernamentales que se reflejen en un catálogo institucional de programas, proyectos y acciones complementarias a los programas educativos desarrollados por cada uno de los niveles en educación básica.

La Secretaría de Turismo ha publicado, en coordinación con otras dependencias, una serie de manuales en los que además de fomentar la organización de las comunidades para consolidar sus proyectos, retoma la educación ambiental como elemento estratégico en los proyectos de las diferentes organizaciones. Entre los manuales podemos mencionar la Guía de normatividad ambiental aplicable al ecoturismo comunitario, la Guía para las mejores prácticas de ecoturismo en áreas protegidas (CDI), la Guía para la presentación de proyectos ecoturísticos a dependencias federales, Inducción al turismo de naturaleza para comunidades rurales, Manual para la Gestión del Desarrollo Turístico Municipal, Requisitos y especificaciones de sustentabilidad del ecoturismo y el Manual de buenas prácticas del ecoturismo. La Secretaría de Turismo también ha participado en la coordinación de la Agenda 21.

El municipio de Puebla ha decidido abordar la problemática ambiental a través de la recién creada Agencia de Protección al Ambiente y Desarrollo Sustentable, órgano desconcentrado que asume y amplia las funciones de la antigua Subdirección de Ecología y Medio Ambiente.
Con la creación de la Agencia surge el Departamento de Información y Educación Ambiental adscrito a la Subdirección de Protección Ambiental, cuyo objetivo es desarrollar actividades que fomenten y fortalezcan la cultura ambiental, apoyadas en la investigación y un sistema de información ambiental del municipio en el marco de una estrategia municipal de educación en la materia. Entre las acciones vinculadas con el tema de Biodiversidad están las siguientes: el trabajo en escuelas de diferente nivel académico, unidades habitacionales y otros grupos organizados con temas sobre recursos naturales, áreas verdes, forestación y reforestación, entre otros; el diseño de una campaña sobre flora y fauna silvestre del municipio de Puebla, motivando la participación de la sociedad en el cuidado y restauración del ambiente, manteniéndola informada sobre diversos aspectos en torno al estado del ambiente del Municipio, a través de diferentes eventos en función de las conmemoraciones ambientales y la creación y operación de un sistema de información ambiental que permita socializar la información del municipio de Puebla.

PERO este problema no solo es cuestión de con- cientización: hace falta invertir en recursos humanos y materiales que fortalezcan el proceso, así como superar la visión de corto plazo de los programas. Es necesario una mayor participación de la sociedad en el movimiento asociativo y separar la educación ambiental de aspectos irrelevantes. Hace falta fortalecer los canales de comunicación entre los educadores ambientales y acercar mejor sus acciones.

La alta motivación de las personas ligadas a las entidades de acción social, así como la existencia de equipos multidisciplinarios acostumbrados a trabajar con metodologías participativas, suponen elementos importantes para el desarrollo de programas de educación ambiental, sin embargo, hace falta coordinadamente entre asociaciones y generar retroalimentación entre profesionistas de los ámbitos social y ambiental, a menudo desvinculados y trabajando aisladamente.

Dada la complejidad del proceso, es necesario contar con actores con visión y compromiso, especialmente de aquellos que son responsables directos de la formulación de políticas públicas.

Vale la pena resaltar la importancia que tiene difundir los materiales sobre las tareas de educación ambiental y conformar y socializar un directorio de educadores ambientales que permita identificar la oferta en materia de educación y capacitación en el estado.

Hace falta fortalecer los vínculos entre los educadores ambientales, compilar y socializar experiencias y acciones que se desarrollan en materia de educación ambiental por las distintas entidades, analizar la aplicación de la Estrategia de Educación Ambiental para la Sustentabilidad en México, evaluar la participación en el Decenio de la Educación Ambiental para la sustentabilidad y el Compromiso Nacional, y los logros del Plan Estatal de Educación Ambiental, así como motivar la participación de los educadores ambientales y la sociedad a través de reconocimientos en los diferentes niveles de gobierno.
Introducción
A finales del ciclo escolar 1993-1994 se realizó un proyecto de investigación con el objetivo de evaluar el conocimiento que tienen los niños rurales y urbanos de educación primaria sobre animales comunes en su municipio.

Se realizó un muestreo estratificado, tomando como variables-atributo: el tipo de sistema, turno y tamaño de la escuela. De esta manera se establecieron cerca de 500 grupos de 10 niños cada uno. Los grados escolares fueron agrupados en tres ciclos diferentes: Ciclo I, niños de 1º y 2º grado; Ciclo II, niños de 3º y 4º grado y el Ciclo III, con niños de 5º y 6º grado.

Se les mostraron los dibujos, realizados por Marco Pineda, de cinco vertebrados comunes del municipio (ver Figura E.9.1). Los criterios para seleccionar a los animales fueron: ser comunes en los alrededores de Puebla y que no se prestaran a confusiones.

A los niños de 6º se les pidió también que mencionaran a tres animales silvestres conocidos. De esta población se tomó una submuestra equivalente a la tercera parte, de las cuales todas fueron escuelas urbanas; posteriormente se seleccionó a todas las escuelas rurales.

Los animales mencionados por los niños se clasificaron en silvestres nativos, silvestres exóticos, acuáticos, animales de granja, mascotas y ambiguos. En esta última categoría se incluyó a animales como los patos, que pueden ser tanto silvestres como domésticos.

Resultados y discusión
Los niños de escuelas urbanas mencionaron 95 especies en total, de las que 65 correspondieron a la categoría de silvestres nativos, 10 a exóticos, 5 a acuáticos, 5 a mascotas, 8 a animales de granja y 2 ambiguos. Los niños de escuelas rurales mencionaron un total de 68 especies: 44 silvestres nativos, 8 silvestres exóticos, 3 acuáticos, 2 mascotas, 8 animales de granja y 3 ambiguos.

En la Figura E.9.2 se muestra que no hay diferencia en el comportamiento de las curvas de acumulación de especies conocidas por los niños de las escuelas rurales y urbanas.
En el Cuadro E.9.1 se presenta el porcentaje general de niños que identificaron a cada uno de los animales de los dibujos.

Conclusión
El conocimiento de los animales silvestres aumenta con la edad. No se encontró diferencia entre el número de especies conocidas por los niños rurales y urbanos, posiblemente por la cercanía de las zonas rurales a la ciudad de Puebla.
Figura E.9.2 Comparación del número de especies conocidas por los niños de escuelas urbanas y rurales

Cuadro E.9.1 Porcentaje de niños que reconocen a diferentes especies de vertebrados

<table>
<thead>
<tr>
<th>Animal</th>
<th>Ciclo I</th>
<th>Ciclo II</th>
<th>Ciclo III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colibrí</td>
<td>41.6%</td>
<td>65.48%</td>
<td>81.66%</td>
</tr>
<tr>
<td>Cacomixtle</td>
<td>2.04%</td>
<td>2.3%</td>
<td>2.09%</td>
</tr>
<tr>
<td>Camaleón</td>
<td>6.07%</td>
<td>12.67%</td>
<td>17.42%</td>
</tr>
<tr>
<td>Correcaminos</td>
<td>3.77%</td>
<td>12.29%</td>
<td>19.1%</td>
</tr>
<tr>
<td>Armadillo</td>
<td>29.4%</td>
<td>62.85%</td>
<td>74.55%</td>
</tr>
</tbody>
</table>
En la Universidad Iberoamericana, Plantel Puebla, a partir de 1994 se crea el Programa Interdisciplinario en Desarrollo Sustentable y Medio Ambiente. Con ello da inicio la definición de líneas de formación ambiental que han tenido como objetivos generales la discusión y reflexión de los problemas del desarrollo asociados al medio ambiente, así como la educación universitaria en materia ambiental.

En este proceso, lo ambiental representa un eje de contenidos, orientaciones y métodos de enseñanza que contribuyen a desarrollar estrategias que permiten al estudiante tener una mejor interpretación de la realidad en un contexto local y regional, caracterizada por particulares dinámicas ecológicas, sociales, económicas, culturales y políticas.

En este sentido, el acercamiento a las diversas problemáticas ambientales y del desarrollo se configura como ejes problematizadores a partir de los que se propician procesos formativos de interiorización, reflexión, acción y desarrollo de competencias profesionales, que preparan a los estudiantes en la construcción de alternativas de sustentabilidad. Uno de los temas importantes a considerar es el estado, comprensión, análisis y alternativas de desarrollo sustentable para la Biodiversidad.

En esta propuesta de formación ambiental universitaria se emplean diversas estrategias, destacan las siguientes:

- La incorporación de la dimensión ambiental en los planes de estudio de las diversas licenciaturas, con la finalidad de encontrar la pertinencia y propiciar el desarrollo de capacidades específicas profesionales en la intervención de estos problemas.
- La intervención profesional ante situaciones concretas mediante la participación en diversos proyectos de servicio social, varios de los cuales se desarrollan con el involucramiento y participación de estudiantes y maestros en procesos comunitarios que abordan problemas ambientales, tales como el caso de Unidades de Manejo de la Vida Silvestre (UMAS), el desarrollo de proyectos de turismo sustentable, la generación de alternativas en manejo integral de cuencas hidrológicas o el diseño e implementación de ecotecnias, entre otros.

- Con el apoyo de proyectos interdisciplinarios o multidisciplinarios de investigación y en el desarrollo de tesis o reportes de titulación.
- Mediante la difusión de la cultura ambiental, a través del programa de “Acción Ambiental Universitaria”. En este sentido, resaltan los programas permanentes de consumo sustentable, uso sustentable del agua y educación en condiciones de cambio climático, así como la formación de promotores ambientales universitarios y su participación en programas de educación ambiental dirigidos a diversos sectores de la población en los ámbitos local y regional.
- El manejo ambiental del campus mediante el establecimiento de un “Sistema de Gestión Ambiental” se concibe como un elemento importante de acercamiento al reconocimiento del cuidado de la Biodiversidad y de los recursos naturales. Cabe destacar la construcción de un lago artificial que cumple con las funciones de servicios ambientales como la creación de microclima, refugio de aves, cortina rompevientos, retención de suelo y espacio de sensibilización ambiental.
- A través de los programas de Extensión Universitaria se cuenta con tres diplomados que abordan la problemática y sustentabilidad de la Biodiversidad en diferentes niveles y dimensiones.
Lo anterior resalta el enfoque de Sistemas Complejos como una propuesta metodológica de acercamiento a los temas ambientales y de sustentabilidad y la vinculación con diversos actores sociales como son el gobierno, la sociedad civil, las instituciones educativas y diversas organizaciones que trabajan por la Biodiversidad.

Estudio de caso 9.3
La contribución de los jóvenes poblanos en la conservación de la biodiversidad

Raúl Cuéllar Ramírez

Con el transcurso del tiempo, los jóvenes han logrado posicionarse como un sector cada vez más importante en la toma de decisiones, destacando también por su participación activa en distintos ámbitos, asumiéndose como agentes de cambio en temas de relevancia como la política, economía, salud, medio ambiente, entre otros.

Los jóvenes han contribuido a la conservación de la biodiversidad en distintas formas a lo largo de los últimos años. Muchas veces su participación ha sido a través de instituciones académicas, por medio de proyectos de investigación, la “liberación” del servicio social y el trabajo de tesis.

Por otra parte, hay jóvenes cuyas expectativas van más allá de lo académico y pueden empezar a realizar acciones de forma individual, formar una agrupación juvenil con otros compañeros interesados y colaborar con alguna institución u organizaciones no gubernamentales, afines a sus intereses.

Esta clasificación nos habla de los distintos espacios desde los cuales, bajo distintas condiciones y con distintos roles, los jóvenes contribuyen a la conservación de la biodiversidad. A continuación informaremos de algunas de las acciones que realizan, para lo que es importante mencionar que ninguna es exclusiva de un espacio.

Los jóvenes contribuyen en la creación del nuevo conocimiento a través de la investigación, realizando muestreos, analizando información estadística, diseñando programas de manejo, de biorremediación, desarrollando técnicas de manejo en cautiverio y evaluando la viabilidad de distintos proyectos.

Participan en los procesos de consolidación del campo de la educación ambiental, destacando en las áreas de la educación informal y no formal, y desarrollando y aplicando distintos programas en el ámbito escolar y comunitario. También realizan estudios sobre la relación que guarda el hombre con su entorno, sobre los saberes y su trascendencia, el nivel de conocimiento adquirido y las actitudes predominantes en los distintos sectores de la población.

A medida que pasa el tiempo los jóvenes tienen mayor participación en los medios de comunicación, haciendo uso de los nuevos avances tecnológicos y del internet e incluyendo la temática en las distintas formas de expresión artística.

Los jóvenes se involucran de forma directa en unidades de manejo ambiental, zoológicos y áreas naturales protegidas o en comunidades, desarrollando proyectos de manejo sustentable, ya sea mediante voluntariado individual, grupal o trabajando en estos espacios. Participan en movilizaciones y campañas...
ciudadanas por la protección de distintas áreas y especies, ya sea de forma radical o moderada. Cabe destacar que cada vez hay más apertura al sector juvenil en los espacios de consulta ciudadana, los que asumen con responsabilidad y compromiso; ejemplos de esto son el Consejo Estatal y los Consejos Municipales de Ecología así como el Consejo Consultivo para el Desarrollo Sustentable. Las áreas de oportunidad más evidentes para la participación de este sector son las siguientes: generar en el grueso de la población juvenil el interés por la conservación de la biodiversidad, producir información adecuada que les permita realizar acciones cotidianas que repercutan de forma directa en un menor deterioro del entorno natural y mejorar la difusión de los distintos espacios de participación existentes, ya que un gran número de jóvenes interesados en la temática no cuentan con un espacio apropiado para desenvolverse o para potenciar los esfuerzos que de forma individual realizan. De esta manera, los jóvenes en el estado de Puebla contribuyen a la conservación de la biodiversidad y aprovechamiento sostenible de los recursos, mostrando un alto sentido de corresponsabilidad y contribuyendo en la construcción de un mundo mejor.

Estudio de caso 9.4
Programa de radio tras las huellas de la naturaleza

Grupo Callicootl: Constantino Villar Salazar, Tania Saldaña Rivermar, Gemmali Vital Guasso

Son muchas las amenazas y riesgos a los que actualmente se enfrenta tanto el entorno como la biodiversidad en México y el mundo, lo que ha llevado a crear e implementar estrategias que permitan ampliar y difundir el conocimiento sobre esta problemática. Así, la educación ambiental no formal es una estrategia que día a día adquiere mayor importancia. Existen diversas herramientas que le permiten fortalecer su impacto en la sociedad, creando vínculos estrechos entre éstas y su entorno. Tal es el caso de los medios masivos de comunicación que permiten difundir y divulgar los conocimientos científicos y tecnológicos que se desarrollan en pro de la conservación, protección y restauración del medio ambiente. Estos medios masivos de comunicación representan una vía atractiva y de fácil acceso a la información. Es así como el programa de radio “Tras las huellas de la naturaleza”, creado por un grupo de estudiantes y egresados de la Escuela de Biología de la Benemérita Universidad Autónoma de Puebla (grupo Callicootl), inició transmisiones el 18 de Noviembre del 2007, en la estación universitaria Radio BUAP, en la barra infantil a través del 96.9 MHZ de Frecuencia Modulada. Su objetivo es promover, difundir y divulgar conocimientos prácticos y esenciales, así como herramientas que permitan realizar acciones para el cuidado y protección del medio ambiente con la inclusión del arte y la cultura, de una forma amena y divertida para el auditorio.

Dirigido fundamentalmente al público infantil, el programa se desarrolla en prosa fantástica con la intervención de diversos personajes representativos de la flora y fauna del estado de Puebla, principalmente. Para evaluar el desempeño e impacto del programa se recurre a la realización de diversos concursos en donde el auditorio plasma de forma artística el conocimiento adquirido, lo que fortalece a este medio de comunicación como una herramienta útil y efectiva de la educación ambiental no formal.
Los procesos de comunicación, los comunicadores, los periodistas, así como los medios de comunicación, tienen un papel trascendental en informar y educar a la ciudadanía sobre temas ambientales, tales como el de la conservación.

Sin embargo, a lo largo de 12 años de trabajo ejerciendo el Periodismo Ambiental, principalmente en la región y en el estado de Puebla, los medios de comunicación han jugado un papel poco contundente y sin compromiso en su responsabilidad hacia la conservación de especies, así como de sus hábitats; su pérdida es uno de los factores más importantes de la situación de extinción que enfrentan plantas y animales en el mundo, en nuestro país, y por supuesto, en nuestro estado.

La poca, o muchas veces nula, preparación de los reporteros que ocasionalmente se aventuran a escribir respecto de temas ambientales, así como los escasos espacios de difusión medioambiental en los medios de comunicación en Puebla, reflejan el escaso profesionalismo e interés que ambas partes tienen hacia la conservación.

En agosto de 1996, el periódico Síntesis, aunque con poca claridad y entendimiento acerca del tema, incursión en esto con la novedad de publicar un proyecto de Comunicación y Periodismo Ambiental, un suplemento semanal con cuatro páginas de tamaño tabloide en sus primeros seis meses de circulación, llamado “Tierra Baldía”. La falta de conocimiento, así como lo incipiente del Periodismo Ambiental, llevó a que los dos primeros números se publicaran con la nomenclatura “cero” y “doble cero”, respectivamente. Sin embargo, la demanda del público por estar informado acerca de temas ambientales, obligó al Diario a ampliar el suplemento a ocho páginas, edición que reabsorbió los nueve años de vida.

“Tierra Baldía” publicó su último número, el 466, el miércoles 12 de octubre de 2009, después de haber abordado temas sobre deforestación, calentamiento global, destrucción de la capa de ozono, contaminación de aguas, aire y suelo, erosión, medicina tradicional, maltrato de animales, además de trabajos académicos, convirtiéndose en un medio de divulgación científica. Por supuesto, en recurrentes ocasiones se trataron los temas de extinción de especies y pérdida de biodiversidad, así como conservación.

Con la publicación de este suplemento ecológico, el periódico Síntesis se convirtió en el pionero en la región y prácticamente en el país, en tratar el Periodismo Ambiental y con ello contribuir en su papel de informador sobre el tema de la conservación.

Luego de una pausa de 10 meses, Milenio Diario Puebla, albergó el proyecto de comunicación y periodismo ambiental bajo el nombre de “Nueva Tierra Baldía”, que ganó en color, pero perdió espacio, pues se limitó a una sola página, también semanal. Este espacio fue aprovechado, una vez más para abordar el tema de la conservación, entre otros.

El miércoles 13 de febrero de 2008, Milenio Diario Puebla, publicó la última página del suplemento, y al día de hoy (noviembre de 2008), en Puebla no hay ningún otro espacio específico de publicación medioambiental. Es claro que temas como el de conservación han perdido en vez de ganar.

A pesar de la situación ambiental que vivimos hoy en nuestro hogar, la Tierra, de la importancia y trascendencia que la conservación de ecosistemas y especies tiene para la supervivencia misma de nosotros como especie, es evidente la falta de entendimiento, apertura y compromiso de los medios de comunicación, que al día de hoy escatiman en dar espacios para la difusión de temática medioambiental y continúan apostando y favoreciendo aquéllos temas mucho más lucrativos, como sociales y deportes.

Y por si fuera poco, en Puebla los Periodistas Ambientales se cuentan todavía con los dedos de una mano y, a pesar de la especialización que deben tener en gran variedad de disciplinas, incluso el contar con estudios de Maestría, los salarios que los medios de comunicación ofrecen, son francamente poco atractivos.
LITERATURA CITADA

Lara González J.D. (en proceso). Las Representaciones sociales del desarrollo sustentable en los alumnos de la BUAP. Tesis de Doctorado en Ciencias Ambientales. Benemérita Universidad Autónoma de Puebla, Puebla, Pue.

Edificio de Protocolos del Gobierno del Estado, construcción que data de principios del siglo XX y que ha albergado oficinas del Banco de México, del Gobierno del Estado y de la Tesorería del H. Ayuntamiento. Arte digital basado en una foto de Sonia Silva.
INTRODUCCIÓN
Sonia Emilia Silva Gómez y José Carlos Pizaña Soto

El marco jurídico e institucional para el uso y la conservación de la biodiversidad, abarca aspectos socioeconómicos, políticos institucionales, culturales y ecológicos, lo que le confiere complejidad al momento de analizarlo e interpretarlo, más aún porque se incluyen códigos en diferentes niveles de jurisdicción: internacionales, federales, estatales y municipales.

El tema ambiental no sólo está relacionado con los recursos naturales y la biodiversidad, sino también con aspectos como la salud, la educación, la propiedad de la tierra, el desarrollo rural, el derecho de las comunidades indígenas, los asentamientos humanos, el desarrollo urbano y la contaminación del suelo, agua y aire.

Considerando todo lo anterior, en este capítulo se presenta el marco regulatorio referido al manejo y preservación de la biodiversidad en el estado de Puebla, la legislación internacional y nacional en sus tres niveles, marco normativo en lo que corresponde a la federación, a la entidad y a sus municipios, un resumen de los programas y proyectos vigentes, relacionados con el manejo y cuidado de la biodiversidad, así como algunos comentarios de las políticas públicas en uso.

LEGISLACIÓN INTERNACIONAL
Sonia Emilia Silva Gómez, José Carlos Pizaña Soto,
Cecilia Leticia Hernández Hernández

En el Siglo XX, nuestro país se adscindió a una serie de convenios internacionales relacionados con la conservación y el uso responsable de la biodiversidad. Uno de los más importantes y que ha tenido mayor impacto es el Convenio sobre Diversidad Biológica (ONU 1992a), en el que México y sus entidades asumen el compromiso de conservar la biodiversidad, hacer uso adecuado de los recursos biológicos y repartir equitativamente los beneficios de los recursos genéticos, mediante la elaboración y aplicación de una Estrategia Nacional sobre Biodiversidad (SEMARNAP–CONABIO 2000), y de manera local con Estrategias Estatales sobre Biodiversidad. En atención a esto, el gobierno del estado, junto con las entidades académicas, organizaciones de la sociedad civil y otras instituciones, promovió la creación de la Estrategia Estatal de Conservación de la Biodiversidad para el estado de Puebla.

Otro de los convenios que actúan directamente en el Estado, es el de la Convención de las Naciones Unidas para la Lucha contra la Desertificación (ONU 2003), pues a través de este documento se ejecutan distintos proyectos y programas de secretarías de estado y de instituciones académicas en la Sierra Norte y la Mixteca Poblana, con el objetivo fundamental de frenar la erosión mediante barreras vivas y lucha contra los incendios.

En cuanto a los Objetivos del Milenio (ONU 2008), particularmente el séptimo, relativo a tender hacia la sostenibilidad del ambiente, es promovido en el territorio poblano mediante programas y proyectos del Centro de Capacitación para el Desarrollo Sustentable (CECADESU), de la Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT).

Es importante la aplicación del Acuerdo Tripartita para la Conservación de Humedales y sus Aves...
Migratorias (Agencia de protección ambiental de Canadá et al. 1996b), y la aplicación que se centra en este tipo de ecosistemas.

Otros convenios internacionales aplicables a Puebla a través de distintas acciones federales y del gobierno del estado son: la Convención Marco de las Naciones Unidas para el Cambio Climático y el Protocolo de Kyoto (ONU 1992b), el Acuerdo de Cooperación para el Manejo de la Vida Silvestre y los Ecosistemas, que deriva del Tratado de Libre Comercio de Norte América (Agencia de Protección Ambiental de Canadá et al. 1996a); el Convenio de Estocolmo (PNUMA 2005) sobre contaminantes orgánicos persistentes, el Protocolo de Montreal (DOF 2007c), relativo a las sustancias que agotan la capa de ozono; y la Convención Relativa a los Humedales de Importancia Internacional (UNESCO 1982), conocido como RAMSAR.

LEGISLACIÓN FEDERAL
Sonia Emilia Silva Gómez, José Carlos Pizarra Soto, Roberto Carlos Sánchez Torres

La ley superior en México es la Constitución Política de los Estados Unidos Mexicanos (CPEUM), de acuerdo al artículo 133, por lo que es indispensable revisar el sistema jurídico ambiental en su conjunto, con las disposiciones que se refieren a esta materia, denominadas bases constitucionales (Brañes 1994).

De esta forma, en la CPEUM se establecen las bases del acceso, uso y aprovechamiento de los recursos naturales, la promoción del desarrollo sustentable y la prevención de la contaminación ambiental, así como las normas necesarias para garantizar el derecho de las comunidades indígenas al acceso a la propiedad y a los recursos naturales en los sitios donde la población rural habita (DOF 2009).

Existen diversos artículos relacionados con temas ambientales en la CPEUM; a continuación se enlistan algunos de los más importantes y se describen brevemente, en el Cuadro 10.1.

En México, las principales políticas ambientales se encuentran establecidas por la vía legislativa; la fuente más importante en esta materia son las Leyes Reglamentarias del artículo 27 constitucional. Existen más de cien leyes a nivel federal, de las que se mencionan las que tienen relación con el uso y cuidado de la biodiversidad, y que son aplicables al Estado de Puebla:

- **Ley General del Equilibrio Ecológico y la Protección al Ambiente.** Establece los principios de lo que se denomina “Política Ecológica General” (DOF 2007b, Brañes 1994). En el estado de Puebla, esta ley es aplicada por las secretarías federales y estatales, en cada uno de sus lineamientos referidos al uso y protección de la biodiversidad.

- **Ley General de Vida Silvestre.** Instaura los lineamientos que deben observarse para conservar y aprovechar sustentablemente la vida silvestre y su hábitat, cuyo objetivo es establecer la concurrencia del gobierno federal, de los gobiernos de los estados y de los municipios, en el ámbito de sus respectivas competencias, relativa a la conservación y aprovechamiento sustentable de la vida silvestre y su hábitat en el territorio de la República Mexicana y en las zonas en donde la nación ejerce su jurisdicción (DOF 2008c). Esta ley se aplica en el Estado de Puebla, por ejemplo, en la conservación de la flora y fauna silvestre de los parques nacionales La Malinche, Iztá–Popocatépetl, Pico de Orizaba y en la Reserva de la biosfera Tehuacán-Cuicatlán; también se aplica en el caso del tráfico de especies silvestres.

- **Ley General de Desarrollo Forestal Sustentable.** Tiene por objeto regular y fomentar la conservación, protección, restauración, producción, ordenación y el cultivo, manejo y aprovechamiento de los ecosistemas forestales del país y sus recursos, así como distribuir las competencias que en materia forestal correspondan a la Federación, los estados, el Distrito Federal y los municipios (DOF 2003). Esta ley aplica en el estado a través de programas y proyectos realizados por la Comisión Nacional Forestal (CONAFOR) y por la Secretaría de Sustentabilidad Ambiental y Ordenamiento Territorial (SSAOT).

- **Ley de Aguas Nacionales.** Le corresponde regular la explotación, uso o aprovechamiento de las aguas, su distribución y control, así como la
Cuadro 10.1 Artículos relacionados con temas ambientales en la CPEUM

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
<th>Vinculación con el contexto poblano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artículo 2°</td>
<td>Esta Constitución reconoce y garantiza el derecho de los pueblos y las comunidades indígenas a la libre determinación y, en consecuencia, a la autonomía para: conservar, mejorar el hábitat y preservar la integridad de sus tierras, en los términos establecidos en esta Constitución.</td>
<td>Para Puebla este artículo adquiere mayor importancia, debido a la superficie y personas dedicadas al sector primario, con un número considerable de habitantes en las zonas rurales, y la población de nueve grupos étnicos (nahua, popolocas, totonacas, otomies, mixtecos, huastecos, mazatecos, tepehuas y chochos).</td>
</tr>
<tr>
<td>Artículo 3°</td>
<td>Se hace referencia al criterio orientador de la educación, en la comprensión de los problemas y el aprovechamiento de los recursos naturales. Las reformas de 1993 incluyen que el Estado promoverá y atenderá todos los tipos y modalidades educativas, basadas en los resultados del progreso científico, que incluyen aspectos relacionados con educación ambiental.</td>
<td>Se aplica mediante programas y proyectos de educación ambiental, formal, informal y no formal, a través del Centro de Capacitación para el Desarrollo Sustentable (CECADESU), de la Secretaría del Medio Ambiente y Recursos Naturales (SEMARNA).</td>
</tr>
<tr>
<td>Artículo 4° / párrafo cuarto</td>
<td>Toda persona tiene derecho a un ambiente adecuado para su desarrollo y bienestar.</td>
<td>Se aplica en el estado de Puebla, a través de programas de reforestación de la Secretaría de Sustentabilidad Ambiental y Ordenamiento Territorial (SSAOT).</td>
</tr>
<tr>
<td>Artículo 25°</td>
<td>Corresponde al Estado Federal, la rectoría del desarrollo nacional para garantizar que sea integral y sustentable.</td>
<td>Se aplica en el estado de Puebla mediante la certificación de semillas que realiza la Secretaría de Desarrollo Rural, por ejemplo.</td>
</tr>
<tr>
<td>Artículo 26°</td>
<td>Habrá un Plan Nacional de Desarrollo (PND) al que se sujetarán obligatoriamente los programas de la Administración Pública Federal. El PND incluye un apartado respecto al desarrollo sustentable.</td>
<td>El apartado acerca de desarrollo sustentable también aparece en los Planes de Desarrollo del Estado de Puebla y de sus municipios. Éstos contemplan, en el caso del uso y cuidado de la biodiversidad, la conservación de los parques y jardines de las ciudades.</td>
</tr>
<tr>
<td>Artículo 27°</td>
<td>Registra que la propiedad de las tierras y aguas comprendidas dentro de los límites del territorio nacional, corresponden originariamente a la nación, así como el dominio directo de todos los recursos naturales de la plataforma continental y los zócalos submarinos.</td>
<td>Es la base del contenido de la Ley General de Equilibrio Ecológico y Protección al Ambiente federal y también la base, para la ley del estado de Puebla, referida al mismo tema.</td>
</tr>
<tr>
<td>Artículo 39°</td>
<td>Se refiere a la soberanía nacional que se contempla en la toma de decisiones, para el uso y manejo de los recursos naturales.</td>
<td>En Puebla, al ser el gobierno de esta entidad el que dispone en su territorio respecto de cuáles especies se explotarán y de qué manera.</td>
</tr>
<tr>
<td>Artículo 73°</td>
<td>Contiene que entre las facultades del Congreso está el llevar a cabo medidas tendientes a prevenir y combatir la contaminación ambiental.</td>
<td>En Puebla aplica cuando los abióticos son degradados y contaminados, por ejemplo el suelo y el agua de la subcuenca del Río Nexapa y de la Presa Avila Camacho, y como consecuencia son afectadas la flora y la fauna, como las hortalizas que en esa región el Río Nexapa se cultivan, y los peces de la Presa que ahí habitan.</td>
</tr>
<tr>
<td>Artículo 115°</td>
<td>Se refiere a que el municipio debe decidir sobre el manejo y disposición final de los residuos sólidos municipales, entre otras tareas.</td>
<td>Se aplica en Puebla, al ser sus 217 municipios los que han dispuesto las formas de colecta de sus residuos, los lugares donde colocarlos, su manejo y la administración del sistema de limpieza, tomando en cuenta las afectaciones a la población humana cercana a los traíderes a cielo abierto o rellenos sanitarios, y las afectaciones a los factores abióticos y bióticos.</td>
</tr>
</tbody>
</table>
preservación de su cantidad y calidad (DOF 2008b). Esto aplica en el estado de Puebla y en sus municipios, mediante los programas de control en la perforación y explotación de pozos, de la Secretaría de Desarrollo Rural, mediante los programas de la Comisión Nacional del Agua y de la Comisión Estatal de Agua y Saneamiento, de los Sistemas Operadores de los Servicios de Agua Potable y Alcantarillado de los municipios, y en algunas poblaciones, a través de los comités locales de agua. En algunos foros poblano se habla de definir como primera función del agua, la supervivencia de los ecosistemas y no solo priorizar las funciones de la satisfacción de las necesidades humanas.

- **Ley Agraria.** Se refiere al tipo de régimen de la tierra, que es fundamental para definir la forma y característica de la gestión ambiental. La experiencia mundial ha demostrado que formas de acceso abierto o poco claro en el tipo de tenencia, trae como consecuencia circunstancias que propician el uso irracional y la destrucción de los recursos, con su consecuente desaparición; la definición clara de los derechos ayuda a establecer con mayor facilidad y claridad el reparto equitativo de los beneficios de la conservación y aprovechamiento sustentable de la biodiversidad (DOF 2008a). En el estado de Puebla, esta ley aplica a través de los proyectos de ordenamiento territorial.

- **Ley General de Desarrollo Rural Sustentable** (DOF 2007a). Es aplicada en el estado a través de las actividades desarrolladas por la Secretaría de Desarrollo Rural y los distritos o regiones en las que esta Secretaría reconoce al territorio poblano como diverso en sus ecosistemas. El objetivo de la aplicación de esta ley en la entidad poblana es planear las actividades agrícolas, pecuarias, de pesca y de recolección de productos maderables y no maderables.

De las zonas ecológicas de México registradas según Challenger (1998), Puebla cuenta con cuatro: subtropical húmeda, templada húmeda y subhúmeda, y semidesértica, por lo que el cuidado y manejo de las especies de flora y fauna requiere de la aplicación de los reglamentos federales, tales como: la Ley de Aguas Nacionales, la Ley General del Equilibrio Ecológico y la de Protección al Ambiente en Materia de Áreas Naturales, de la Ley General del Equilibrio Ecológico y la Protección al Ambiente en materia de Ordenamiento Ecológico, de la Ley de Ordenamiento Ecológico. Las Leyes antes descritas se aplican por las distintas Secretarías Federales y Estatales, mediante el desarrollo de proyectos y programas en la entidad poblana.

Normas oficiales mexicanas

Sonia Emilia Silva Gómez, Roberto Carlos Sánchez Torres, José Silvestre Textile Tiarnani

El Estado de Puebla suma 20 Normas Oficiales Mexicanas (NOM) que se relacionan con el uso y cuidado de la biodiversidad (DGN 2002) (Cuadro 10.2).

<table>
<thead>
<tr>
<th>NOM</th>
<th>Establece</th>
<th>Son aplicables en el estado de Puebla</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM-005-SEMARNAT-1997</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de corteza, tallos y plantas completas de vegetación forestal.</td>
<td>En las regiones rurales de la Sierra Nororiental, Sierra Norte y Mixteca (Gobierno del Estado de Puebla, 2008) principalmente, y otras regiones poblana donde se localizan o se cultivan especies para alimentación y jardinería (elaboración y comercio de los objetos de fibra vegetal), medicinales y ornamentales, o especies que sirven como materia prima para la industria y cosmética, y como fuente de energía.</td>
</tr>
<tr>
<td>NOM-005-SEMARNAT-1997</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de hojas de palma.</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 10.2 NOMs relacionadas con el uso y protección a la biodiversidad aplicables en Puebla
Continúa cuadro 10.2

<table>
<thead>
<tr>
<th>NOM</th>
<th>Establishes:</th>
<th>Son aplicables en el estado de Puebla</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM-007-SEMARNAT-1997</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de ramas, hojas o pencas, flores, frutos y semillas.</td>
<td>En las regiones rurales de la Sierra Nororiental, Sierra Norte y Mixteca (Gobierno del Estado de Puebla, 2008) principalmente, y otras regiones poblanas donde se localizan o se cultivan especies para alimentación y jardinería (elaboración y comercio de los objetos de fibra vegetal), medicinales y ornamentales, o especies que sirven como materia prima para la industria y cosmética, y como fuente de energía.</td>
</tr>
<tr>
<td>NOM-008-SEMARNAT-1996</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de cogollos, que son partes interiores, más apretadas y tiernas de algunas hortalizas, como la lechuga.</td>
<td></td>
</tr>
<tr>
<td>NOM-010-SEMARNAT-1996</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de hongos.</td>
<td></td>
</tr>
<tr>
<td>NOM-011-SEMARNAT-1996</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de musgo (Polytrichum spp.), heno (Tillandsia spp.), doradilla o siempre viva (Selaginella spp.).</td>
<td></td>
</tr>
<tr>
<td>NOM-012-SEMARNAT-1996</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento de leña para uso doméstico.</td>
<td></td>
</tr>
<tr>
<td>NOM-013-SEMARNAT-1997</td>
<td>La regulación sanitaria de la importación de árboles de navidad naturales de las especies Pinus sylvestris, Pseudotsuga menziesii, y del género Abies.</td>
<td></td>
</tr>
<tr>
<td>NOM-018-SEMARNAT-1999</td>
<td>Los procedimientos, criterios y especificaciones técnicas y administrativas para realizar el aprovechamiento sostenible de la hierba de candelilla (Euphorbia spp.), también establece los procedimientos de transporte y almacenamiento del cerote, que es un subproducto no maderable, proveniente de la candelilla.</td>
<td></td>
</tr>
<tr>
<td>NOM-019-SEMARNAT-1999</td>
<td>Los lineamientos técnicos para el combate y control de los insectos descorzadores de las coníferas.</td>
<td></td>
</tr>
<tr>
<td>NOM-020-SEMARNAT-2001</td>
<td>Los procedimientos y lineamientos que se deberán observar para la rehabilitación, mejoramiento y conservación de los terrenos silvo pastoriles.</td>
<td></td>
</tr>
<tr>
<td>NOM-023-SEMARNAT-2001</td>
<td>Las especificaciones técnicas que deberá contener la cartografía y la clasificación para la elaboración de los inventarios de los suelos.</td>
<td></td>
</tr>
<tr>
<td>NOM-025-SEMARNAT-1995</td>
<td>Las características que deben de tener los medios de marquedo de la madera en rollo, así como los lineamientos para su uso y control.</td>
<td></td>
</tr>
<tr>
<td>NOM-026-SEMARNAT-1996</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de resina de pino (Pinus pinaster).</td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
Contínua cuadro 10.2

<table>
<thead>
<tr>
<th>NOM</th>
<th>Establece:</th>
<th>Son aplicables en el estado de Puebla</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM-027-SEMARNAT-1996</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de tierra de monte.</td>
<td>En las regiones rurales de la Sierra Nororiental, Sierra Norte y Mixteca (Gobierno del Estado de Puebla, 2008) principalmente, y otras regiones poblanas donde se localizan o se cultivan especies para alimentación y jardinería (elaboración y comercio de los objetos de fibra vegetal), medicinales y ornamentales, o especies que sirven como materia prima para la industria y cosmética, y como fuente de energía.</td>
</tr>
<tr>
<td>NOM-028-SEMARNAT-1996</td>
<td>Los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de raíces y rizomas de vegetación forestal.</td>
<td></td>
</tr>
<tr>
<td>NOM-059-SEMARNAT-2001</td>
<td>Las especies y subespecies de flora y fauna silvestres terrestres y acuáticas en peligro de extinción, amenazadas, raras y las sujetas a protección especial, y que establece especificaciones para su protección.</td>
<td></td>
</tr>
<tr>
<td>NOM-061-SEMARNAT-1994</td>
<td>Las especificaciones para mitigar los efectos adversos ocasionados en la flora y fauna silvestres por el aprovechamiento forestal.</td>
<td></td>
</tr>
<tr>
<td>NOM-062-SEMARNAT-1994</td>
<td>Las especificaciones para mitigar los efectos adversos sobre la biodiversidad ocasionados por el cambio de uso del suelo de terrenos forestales a agropecuarios.</td>
<td></td>
</tr>
<tr>
<td>NOM-120- SEMARNAT -1997</td>
<td>Las especificaciones de protección ambiental para las actividades de exploración minera directa, en zonas con climas secos y templados en donde se desarrolle vegetación de matorral xerófilo, bosque tropical caducifolio, bosques de coníferas o encinos.</td>
<td></td>
</tr>
</tbody>
</table>

LEGISLACIÓN ESTATAL

Sonia Emilia Silva Gómez

La Constitución Política del Estado Libre y Soberano de Puebla establece en su artículo 121 que el Estado vigilará las reglas para conservar un medio ambiente sano y favorable a sus habitantes. Por otra parte, se creó la Secretaría del Medio Ambiente y Recursos Naturales (SMRN), mediante decreto del 4 de marzo de 2005, ahora llamada Secretaría de Sustentabilidad Ambiental y Ordenamiento Territorial (SSAOT).

En este apartado se presentan acuerdos y leyes adaptados a la situación socioeconómica y ecogeográfica de Puebla, derivados de la normatividad nacional, e incluso mundial.

Acuerdos estatales

Los acuerdos relacionados con la operación y administración de proyectos y programas en la entidad poblana, tendientes al cuidado y mejor manejo de factores abióticos y bióticos, se encuentran en la página electrónica del gobierno del estado, en un apartado especial, donde se registran aspectos en materia ambiental y en legislación ambiental. Éstos son:

- **Acuerdo modificatorio** que establece los Lineamientos de Operación de los Programas de Desarrollo Forestal de la Secretaría del Medio Ambiente y Recursos Naturales, de la entidad poblana.
- **Ambos acuerdos** son llevados a cabo mediante la actuación de la SEMARNAT y de la CONAFOR en sus delegaciones poblanas, y de la SSAOT, realizando proyectos de forestación y reforestación, y de organización de pobladores rurales para que vigilen los bosques.
La problemática ambiental a nivel mundial y de México coincide en dar prioridad al tratamiento de tres grandes dificultades: la contaminación atmosférica, la escasez y contaminación del agua y la pérdida de la biodiversidad. En Puebla también aplica este orden de prioridad, al diseñar proyectos y programas que incluyen actividades de forestación y reforestación, el mejor manejo y disposición de desechos, la recuperación de mantos acuíferos y su descontaminación, y el cuidado de la biodiversidad. Por consiguiente se aplican en Puebla las leyes que se registran en el Cuadro 10.3.

Debido a la situación geográfica del estado de Puebla y a su colindancia con los estados de Hidalgo, Morelos, Tlaxcala y el Distrito Federal, toda la región constituye “una gran ciudad”, donde se concentra un tercio de la población del país y se concentran actividades de los tres sectores: primario, secundario y terciario, que se relacionan con la explotación de los recursos naturales.
Las instituciones federales cuya gestión atañe al uso y protección de la biodiversidad, junto con los organismos del gobierno del estado, implementan diversos planes, programas y proyectos encaminados al cumplimiento de la legislación y el desarrollo sustentable.

Los programas específicos al año 2010 de las delegaciones de las secretarías de estado y organismos afines, así como de la entonces Secretaría de Medio Ambiente y Recursos Naturales del Estado de Puebla (SMRN), se resumen en el Cuadro 10.4.

El Plan Estatal de Desarrollo 2011–2017 (Gobierno del Estado de Puebla 2011) contempla el impulso de estrategias para gases de efecto invernadero. Asimismo, establece que el desarrollo regional debe ser sustentable, ecológicamente sostenible y no comprometer el patrimonio natural.

El gobierno del estado de Puebla identifica como prioritarios en la temática ambiental, los rubros relacionados con: aire, recursos forestales, agua, residuos, educación, impacto y riesgo, legislación, gestión con organizaciones no gubernamentales, verificación vehicular, inspección y vigilancia, áreas naturales protegidas, ordenamiento ecológico y red de monitoreo ambiental.

Los programas vigentes que se encuentran directamente relacionados con la biodiversidad del estado son:

- El forestal, que comprende diez programas de desarrollo forestal; uno en ocurrencias de incendios y otro en tala clandestina.
- Impacto y riesgo, con programas de prevención de contaminación de los recursos bióticos y abióticos, con el objetivo de evitar el deterioro de los recursos naturales.
- Inspección y vigilancia, encargada de cuidar el cumplimiento de la Ley para la Protección del Ambiente Natural.
- Parque Flor del Bosque, que posee diversas actividades, como recreación, sensibilización de la población y muestra de actividades para el manejo de recursos y desechos.
- Ordenamiento ecológico, con programas de planeación del uso del suelo, de acuerdo a sus características bióticas.
Cuadro 10.4 Programas vigentes al 2010 en el estado de Puebla, para la protección de especies y temas afines

<table>
<thead>
<tr>
<th>Programas</th>
<th>Regionales</th>
<th>Estatales</th>
<th>Locales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Árbol</td>
<td>CONAFOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forestal y suelos</td>
<td>SEMARNAT</td>
<td></td>
<td>SGUOP</td>
</tr>
<tr>
<td>Impacto y riesgo ambiental</td>
<td>SEMARNAT</td>
<td></td>
<td>APADS</td>
</tr>
<tr>
<td>Materiales y actividades riesgosas</td>
<td>SEMARNAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calidad del aire</td>
<td>SEMARNAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licencia ambiental única</td>
<td>SEMARNAT</td>
<td></td>
<td>CONANP</td>
</tr>
<tr>
<td>Vida silvestre</td>
<td>SEMARNAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pueblos indígenas y medio ambiente</td>
<td>SEMARNAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registro de unidades de manejo para la conservación de vida silvestre (UMA)</td>
<td>SEMARNAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educación ambiental para la sustentabilidad</td>
<td>SEMARNAT</td>
<td></td>
<td>APADS</td>
</tr>
<tr>
<td>Ordenamiento ecológico local</td>
<td>SEMARNAT</td>
<td></td>
<td>APADS</td>
</tr>
<tr>
<td>Desarrollo forestal</td>
<td>CONAFOR</td>
<td>SMRN</td>
<td></td>
</tr>
<tr>
<td>Residuos</td>
<td>SMRN</td>
<td></td>
<td>OOSLP</td>
</tr>
<tr>
<td>Educación ambiental</td>
<td>SEMARNAT</td>
<td>SMRN</td>
<td></td>
</tr>
<tr>
<td>Impacto ambiental</td>
<td>SEMARNAT</td>
<td>SMRN</td>
<td>APADS</td>
</tr>
<tr>
<td>Ordenamiento ecológico</td>
<td>SEMARNAT</td>
<td></td>
<td>SMRN</td>
</tr>
<tr>
<td>Agua</td>
<td>SMRN</td>
<td></td>
<td>SOAPAP</td>
</tr>
<tr>
<td>Programa de certificación*</td>
<td>PROFEP A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comités de vigilancia</td>
<td>PROFEP A</td>
<td>PROFEP A / APADS</td>
<td></td>
</tr>
<tr>
<td>Denuncia pública</td>
<td>PROFEP A</td>
<td></td>
<td>APADS</td>
</tr>
<tr>
<td>Componente agua potable, alcantarillado y saneamiento</td>
<td>CONAGUA</td>
<td>CONAGUA</td>
<td>CONAGUA / SOAPAP</td>
</tr>
<tr>
<td>Componente hidro-agrícola. Certificación de semillas. Producción de especies nativas</td>
<td>CONAGUA</td>
<td>SDR</td>
<td>SDR</td>
</tr>
<tr>
<td>Áreas verdes urbanas</td>
<td></td>
<td></td>
<td>APADS</td>
</tr>
<tr>
<td>Reforestación y forestación</td>
<td>SEMARNAT</td>
<td>SMRN</td>
<td></td>
</tr>
</tbody>
</table>

*Residuos, agua, suelo, programa nacional de auditoria ambiental.

APADS: Agencia de Protección al Ambiente y Desarrollo Sustentable (municipio de Puebla)

CONAFOR: Comisión Nacional Forestal

CONAGUA: Comisión Nacional del Agua

OOSLP: Organismo Operador del Servicio de Limpia del Municipio de Puebla

PROFEPA: Procuraduría Federal de Protección al Ambiente

SDR: Secretaría de Desarrollo Rural (Estado de Puebla)

SEMARNAT: Secretaría del Medio Ambiente y Recursos Naturales (Federal)

SGUOP: Secretaría de Gestión Urbana y obra Pública

SMRN: Secretaría de Medio Ambiente y Recursos Naturales (Estado de Puebla)

SOAPAP: Sistema Operador de Agua Potable y Alcantarillado de Puebla
En estos planes, programas y proyectos también participan las instituciones de educación superior, públicas y privadas, que han desarrollado proyectos relacionados con temáticas tales como: inventarios, caracterización y conservación de flora y fauna, aprovechamiento y manejo racional de recursos naturales, descontaminación de cuerpos de agua y de suelos, zonificación agroecológica, educación ambiental e innovaciones tecnológicas. Entre las instituciones que destacan están las siguientes: Bene-mérita Universidad Autónoma de Puebla, Instituto Tecnológico Regional de Puebla, universidades tecnológicas de distintos lugares del estado, Universidad Popular del Estado de Puebla, Universidad de las Américas, Universidad Iberoamericana, Colegio de Postgraduados en Ciencias Agrícolas y la Universidad del Desarrollo.

Las 42 organizaciones no gubernamentales, asociaciones y sociedades que trabajan en el Estado de Puebla se encuentran agrupadas en ejes temáticos tales como educación ambiental (15), recreación (4), producción (3), capacitación y asesoría (2), participación de la ciudadanía en proyectos para el cuidado de la biodiversidad (8), preservación de alguna especie (3) y desarrollo de alguna actividad específica tendiente a la resolución de la problemática ambiental (7).

En Puebla se cuenta, además, con la participación de dieciocho centros nacionales de investigación y dieciséis organismos internacionales que realizan algunas tareas relacionadas con la biodiversidad. La información se encuentra en las páginas electrónicas del gobierno del estado y del Ayuntamiento poblano.
Existe el Reglamento de Ecología y Protección al Ambiente del Municipio de Puebla, que tiene por objeto el ordenamiento ecológico, establecer zonas intermedias de salvaguarda, parques, áreas naturales, zonas sujetas a conservación ecológica y jardines botánicos, y prevenir y controlar la contaminación del aire, agua y suelo.

Además, el Código Reglamentario para el Municipio de Puebla (Honorable cabildo del municipio de Puebla, 2008) compila las disposiciones de carácter municipal que rigen dentro del mismo; de éste, el capítulo 26 “de desarrollo sostenible en materia ecológica y protección al ambiente natural del municipio de Puebla”, establece en su artículo 1 712 que el objeto de este ordenamiento es fundar la normatividad ambiental en el municipio, definiendo los principios mediante los que se habrá de formular, conducir y evaluar la política ambiental, así como los instrumentos y procedimientos para su aplicación, procurando la preservación, protección y restauración del equilibrio natural, el mejoramiento del medio ambiente y el desarrollo sostenible.

Dentro del municipio y de conformidad con otro artículo del Código Reglamentario para el Municipio de Puebla (COREMUN), el artículo 1 713, se considera de orden público e interés social el establecimiento de medidas de control y seguridad que tengan como objeto prevenir y controlar la contaminación del aire, agua y suelo, y la protección de la flora y fauna silvestre, por lo que se debe regular la responsabilidad por daños al ambiente y establecer mecanismos adecuados para garantizar el equilibrio ecológico de los ecosistemas existentes.

El COREMUN, en el artículo 1 717, instaura como atribuciones del H. Ayuntamiento el establecer los principios conducentes para conservar, proteger y vigilar los recursos flora y fauna en el ámbito de su jurisdicción y competencia, favoreciendo su aprovechamiento y uso racional, y procurar la preservación y restauración del equilibrio ecológico y protección al ambiente en los centros de población, en relación con los efectos derivados de los servicios de alcantarillado, rastros, mercados, centrales de abasto, panteones, tránsito y transporte locales, siempre y cuando no se trate de facultades otorgadas a la Federación o al Estado. También menciona el artículo 1 717 coadyuvar en coordinación con las autoridades federales y estatales y con las demás instancias competentes, en la vigilancia y cumplimiento de las normas oficiales mexicanas para el control de la contaminación del aire, agua y suelo, así como de las normas establecidas para la protección de la flora y fauna silvestre y/o acuática.

Acciones vigentes en el municipio de Puebla, para la protección de especies y temas afines

Si bien el H. Ayuntamiento poblano no tiene registros programados como tales, sí se desarrollan proyectos y se llevan a cabo acciones vinculadas a la temática de los programas regionales y estatales, tales como: impacto y riesgo ambiental, calidad del aire, ordenamiento ecológico local, residuos, educación ambiental para la sustentabilidad, agua potable, alcantarillado y saneamiento, áreas verdes urbanas, forestación y reforestación, inspección y vigilancia, denuncia pública, mismos que se citan en el Cuadro 10.4.
Puebla cuenta con un Consejo Estatal de Ecología que tiene como objetivo establecer mecanismos de concertación con la sociedad y promover la coordinación con los demás niveles de gobierno. El Consejo Estatal de Ecología trabaja para identificar acciones para la preservación de ecosistemas, impulsa la participación de los sectores académico, privado, social y público, y apoya las bases para actualizar la política ambiental estatal.

En la entidad se diseñó y puso en marcha el Programa Estatal de Descentralización de la Gestión Ambiental del Estado de Puebla, que tiene entre sus programas y proyectos los que se citan a continuación: residuos sólidos, tratamiento de aguas residuales, impacto ambiental, sistema estatal de áreas naturales protegidas, programa de desarrollo institucional ambiental, difusión ecológica, unidades de manejo y aprovechamiento sustentable de la vida silvestre, verificación vehicular, revisión industrial y de servicio, y monitoreo atmosférico y mejoramiento de la calidad del aire de la zona metropolitana del Valle de Puebla.

Se logró formar la Comisión Estatal Forestal y de la Fauna Silvestre para que opere con la participación de las instituciones oficiales, las organizaciones no gubernamentales y la sociedad civil que habita más cerca de los bosques y de las especies silvestres.

La experiencia que han dejado los proyectos, programas y planes a distintos niveles de gobierno, llevados a cabo en instituciones de educación y en organizaciones no gubernamentales, muestran que las acciones en torno al manejo y protección de la biodiversidad deben ir más allá de actividades con límites de los municipios; es de suma importancia establecer mayor número de proyectos intermunicipales, tomando en cuenta zonas ecológicas, biog regiones y microcuencas.

Por otra parte, la normatividad ambiental necesita de un vínculo mayor con el derecho penal, que permita de manera justa sancionar las acciones en contra de la biodiversidad.

Son urgentes los análisis integrales que incluyan distintas variables, como el estudio de las actividades económicas e industriales, que han mostrado que a corto plazo están afectando a la biodiversidad.

También es necesario promover la especialización de licenciados en derecho o de redes académicas que traten la problemática de pérdida de la biodiversidad, y no sólo dejar esta temática como responsabilidad de biólogos y naturalistas, entre otros.

LITERATURA CITADA

Diario Oficial de la Federación (DOF). 2007c. Protocolo de Montreal relativo a las sustancias que agotan la capa de ozono. Decreto Promulgatorio de la Enmienda de - Beijing que Modifica el Protocolo de Montreal relativo a las Sustancias que Agotan la Capa de Ozono, adoptada el tres de diciembre de mil novecientos noventa y nueve por la XI Conferencia de las Partes. 6 p.

Paisaje rural en San Juan Raya, Puebla.
Foto: Miguel Ángel Sicilia / Banco de imágenes de CONABIO.
En este capítulo se realiza un análisis sobre las capacidades de las instituciones de los sectores público, privado, académico y ONG’s, respecto de la gestión para el aprovechamiento sustentable de la biodiversidad. Se presentan las principales acciones y tareas realizadas y/o programadas por los diferentes sectores. En el primer sector, el público, se toma en cuenta acciones de los tres niveles de gobierno: federal, estatal y municipal. En el segundo, el privado, se hace mención especial de las Unidades de Manejo para la Conservación de la Vida Silvestre (UMA’s) y la Unión de Ejidos Forestales de la Sierra Norte. En el tercer sector, el académico, se toma en cuenta básicamente la oferta educativa en materia ambiental y los proyectos de investigación relacionados, de las instituciones de educación superior (Universidades y Tecnológicos). El cuarto sector lo representan las Organizaciones no Gubernamentales (ONG’s), donde muchas actividades se realizan a través del Consejo Estatal de Ecología y otros organismos.

En todos los casos se trata de manifestar la importancia de la biodiversidad del estado de Puebla, la participación pública y ciudadana, así como los esfuerzos intersectoriales, tomando en cuenta los proyectos y programas establecidos por las diferentes organizaciones. Se plantean las oportunidades y riesgos en el desarrollo de mercados verdes, que son herramientas para el control y manejo de la oferta y la demanda de especies de la vida silvestre, así como de tendencias y prospectivas sobre la investigación, conservación, manejo y aprovechamiento sustentable de la flora y fauna silvestres para conservar la biodiversidad del estado.

El sector público está representado por las secretarías de estado federales y estatales que interactúan a través de convenios de colaboración para el desarrollo de programas ambientales y que son financiados a través de fondos mixtos entre las dependencias, llegando en algunos casos a tener participación de entidades municipales. Uno de los convenios de colaboración más importantes en este sentido es el establecido entre la Secretaría del Medio Ambiente y Recursos Naturales-Comisión Nacional Forestal (SEMARNAT-CONAFOR) y el Gobierno del estado de Puebla a través de la Secretaría de Sustentabilidad Ambiental y Ordenamiento Territorial (SSAOT), y que impulsa el programa ProÁrbol. Este programa es considerado como el más importante del sector forestal, por parte de las administraciones federales y estatales. Tiene como objetivo general impulsar el desarrollo forestal y la conservación de la vida silvestre, con prioridad en los municipios reconocidos por la Secretaría de Desarrollo Social (SEDESOL) como los de mayor índice de marginación en Puebla. Pro Árbol es un programa que ha integrado eficacia y equidad en la entrega y ejercicio de los recursos económicos, ya que otorga apoyo financiero, asistencia técnica y asesoría, que están sujetos a claras reglas de operación. Sus objetivos particulares son:

- Disminuir los índices de pobreza y marginación en áreas forestales, mediante la inducción a un manejo y uso adecuado de sus recursos naturales.
- Generar desarrollo y expansión económica a partir de la valoración, conservación y aprovechamiento sustentable de los recursos de los bosques, selvas y matorrales xerófilos.
• Impulsar la planeación y organización forestal, elevar la producción y productividad de los recursos forestales, su conservación y restauración, así como elevar el nivel de competitividad del sector para contribuir a mejorar la calidad de vida de los mexicanos.

En este sentido, las regiones más favorecidas en el estado han sido la Sierra Norte, la Sierra Nororiental y la Sierra Negra, además del Parque Nacional Ixtapopo y la Malinche, en cuanto a programas forestales; y la región Mixteca en las actividades cinegéticas, donde el animal silvestre más aprovechado es el venado cola blanca *Odocoileus virginianus* (Figura 11.1), de la subespecie *mexicanus* (Villarreal 2006).

La Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT) basa la conservación de la biodiversidad en tres ejes principales: forestal, suelos y vida silvestre, y tiene como objeto regular el fomento a la conservación, protección, restauración, producción, ordenación, cultivo, manejo y aprovechamiento de los ecosistemas forestales del país y otros recursos, a fin de propiciar el desarrollo forestal sustentable. Entre sus principales instrumentos están:

1. La Planeación del Desarrollo Forestal
2. El Sistema de Información Forestal
3. El Inventario Forestal y de Suelos
4. La Zonificación Forestal
5. El Registro Forestal Nacional
6. Las Normas Oficiales Mexicanas en Materia Forestal

El sistema de gestión forestal

La SSAOT (antes SMRN) a través de diferentes programas estatales impulsa el establecimiento de viveros para la producción de diversas especies forestales,
algunas de gran valor comercial y otras con fines de reforestación; brinda facilidades para el transporte, reparto y plantación de las mismas en diferentes regiones de la entidad; apoya en el mantenimiento y saneamiento forestal, provee del pago de servicios ambientales a los poseedores de los recursos naturales, implementa sitios de investigación silvícola y un banco de germoplasma, fortalece UMA’s y lleva a cabo acciones de monitoreo de la vida silvestre, todo ello con el objetivo de conservar, aprovechar y usar de manera sustentable la biodiversidad del Estado.

En relación a la vida silvestre, la SEMARNAT tiene como objeto regular el fomento a la conservación y aprovechamiento sustentable de la vida silvestre y su hábitat en el territorio estatal, incluidas las especies que se encuentran bajo alguna categoría de riesgo, de conformidad con la Norma Oficial Mexicana NOM-059-SEMARNAT-2001, que establece la protección ambiental de especies nativas mexicanas de flora y fauna silvestres, bajo categorías de riesgo y especificaciones para su inclusión, exclusión o cambio en la lista de especies en riesgo. Comprende a los organismos que subsisten sujetos a los procesos de evolución natural y que se desarrollan libremente en su hábitat, incluyendo sus poblaciones menores e individuos que se encuentran bajo el control del hombre, así como las especies ferales.

Por otra parte, el gobierno del estado, por medio de la Secretaría de Desarrollo Rural (SDR) y de la Secretaría de Agricultura, Ganadería, Pesca y Alimentación (SAGARPA), impulsaron en el 2007 la creación del Sistema Producto denominado Ganadería Diversificada, siendo Puebla el primer estado que impulsó esta cadena productiva. Este sistema reorienta la producción ganadera y silvícola a través de la conservación, manejo y aprovechamiento sustentable de la fauna silvestre y su hábitat, por medio de las actividades cinegéticas y ecoturísticas. La región más importante en este sentido es la Mixteca (Figura 11.2) y en menor medida la Sierra Nororiental; el programa ha sido evaluado por medio de una matriz Presión-Estado-Respuesta (PER) (Cuadro 11.1). Participaron el

Figura 11.2 Cerriles con selva baja caducifolia (bosque tropical caducifolio) del Municipio de Chiautla, en la región Mixteca (Foto: Oscar Agustín Villareal Espino Barros).
Cuadro 11.1 Evaluación del Sistema Producto Ganadería Diversificada en la Mixteca Poblana

<table>
<thead>
<tr>
<th>Variables</th>
<th>Elemento</th>
<th>Indicador</th>
<th>Periodo o años</th>
<th>Efectos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población de venados</td>
<td>Crecimiento</td>
<td>Densidad poblacional</td>
<td>Antes</td>
<td>Desconocido</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Después</td>
<td>Estimado</td>
</tr>
<tr>
<td>Hábitat</td>
<td>Componentes</td>
<td>Evaluación y mejoramiento</td>
<td>Antes</td>
<td>Desconocido</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Después</td>
<td>Evaluado</td>
</tr>
<tr>
<td>Alimentación de venados</td>
<td>Fitomasa</td>
<td>Capacidad de carga</td>
<td>Antes</td>
<td>Desconocido</td>
</tr>
<tr>
<td></td>
<td>Dieta del venado</td>
<td>Diversidad</td>
<td>Después</td>
<td>Evaluado in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>139 especies</td>
</tr>
<tr>
<td>Producción de trofeos</td>
<td>Aprovechamiento</td>
<td>Tasa de cosecha</td>
<td>Antes</td>
<td>Ilegal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Después</td>
<td>Legal</td>
</tr>
<tr>
<td>Nitrógeno en el ecosistema</td>
<td>Uso del Nitrógeno</td>
<td>Reciclaje de Nitrógeno</td>
<td>Antes</td>
<td>Sin evaluar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Después</td>
<td>Evaluado</td>
</tr>
<tr>
<td>Uso de la tierra</td>
<td>Extensión</td>
<td>Superficie (ha)</td>
<td>2000</td>
<td>14 423.92 ha</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>72 710.02 ha</td>
</tr>
<tr>
<td>Biodiversidad</td>
<td>Conservación en las UMAS</td>
<td>Número de predios</td>
<td>2000</td>
<td>13 predios</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>72 predios</td>
</tr>
<tr>
<td>Desarrollo Regional</td>
<td>Municipios</td>
<td>Número</td>
<td>2000</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td>Desarrollo socio-económico</td>
<td>Generación de empleos</td>
<td>Incremento por cada 1 000 ha de</td>
<td>Antes</td>
<td>Sin empleos</td>
</tr>
<tr>
<td></td>
<td>permanentes</td>
<td>operación</td>
<td>Después</td>
<td>1-2 Empleos</td>
</tr>
<tr>
<td>Información y participación</td>
<td>Actividades de capacitación y toma de decisiones</td>
<td>Plan de manejo de UMAS</td>
<td>Antes</td>
<td>Inexistente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Después</td>
<td>72</td>
</tr>
<tr>
<td>Convenios y eventos</td>
<td>Instituciones gubernamentales y BUAP</td>
<td>Realización de eventos</td>
<td>Antes</td>
<td>Inexistente</td>
</tr>
<tr>
<td></td>
<td>Torneos de caza deportiva</td>
<td>Realización del Súper Slam y otros torneos</td>
<td>Después</td>
<td>Dos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sector público a nivel federal y estatal, los productores, representados por las Uniones Ganaderas del Estado de Puebla, y por el académico, la Benemérita Universidad Autónoma de Puebla (BUAP) y varias ONGs (Villarreal et al. 2008 a).

Otra propuesta fundamental de la SDR son los “Agronegocios” donde se busca, con carácter preventivo y en función de las condiciones agroecológicas, el desarrollo sustentable en regiones marginadas y zonas indígenas, frecuentemente afectadas por fenómenos climatológicos adversos que inciden en una disminución de la productividad, mediante la reconversión productiva hacia sistemas de producción sustentables, como alternativa para el mejor aprovechamiento de los recursos naturales locales, impulsando el desarrollo de proyectos integrales. Además se identificaron un total de 260 especies de plantas y animales que son utilizados como alimento en el estado (SDR 2007), ejemplo de ello es, desde el uso de las plantas medicinales, hasta las actividades cinegéticas y turismo de naturaleza. En el 2008 el gobierno de Puebla, a través de la SDR, fortaleció a las UMAs (Unidades de Manejo para la Conservación de la Vida Silvestre) en acciones para el mejoramiento del hábitat, captación de agua y vigilancia a través de la policía estatal, para atender las actividades de la caza ilegal y la extracción de fauna. Otras actividades de la SDR tienen que ver con atender las afectaciones por plagas y con ello reducir el uso de agroquímicos; de esta forma se impulsó el uso de insectos benéficos, logrando con ello reducir los niveles de contaminación en los cultivos sin afectar la biodiversidad. Además, la Comisión Estatal de Agua y Saneamiento de Puebla realiza labores de cloración y monitoreo bacteriológico continuamente, con el objeto de disminuir microorganismos patógenos que afectan a la población humana y a los animales domésticos y silvestres.

La Secretaría de Turismo (SECTUREP), dependiente del gobierno del estado, ha instrumentado el “Plan Estatal de Turismo de Naturaleza”, como estrategia estatal para el aprovechamiento de la biodiversidad, teniendo la perspectiva turística desde el punto de vista económico y que es una actividad que genera progreso. El turismo alternativo o ecológico, visto bajo el enfoque social, es un fenómeno que a través del desplazamiento de las personas provoca procesos de interacción incluso antes de iniciar el viaje, durante y después del mismo, tomando en cuenta aspectos sociológicos, como el tratarse de una actividad de ocio que otorga al ser humano en la mayoría de los casos oportunidad de crecimiento y desarrollo personal y antropológicos, ya que provee la oportunidad de aprendizaje y sensibilización sobre su cultura, además de las que conoce a través del viaje. Así, el turismo, desde cualquier perspectiva, resulta ser siempre una actividad compleja, que debe ser planificada para evitar los desastres económicos, sociológicos o antropológicos (SECTUREP, 2007).

SECTOR PRIVADO
Oscar Agustín Villarreal Espino Barros
José Carlos Pizarra Soto

La importancia del sector privado se manifiesta básicamente en el “sector primario” principalmente en las actividades productivas que conservan los recursos naturales tanto renovables como no renovables. En este aspecto destacan la Unión de Ejeños Forestales de la Sierra Norte de Puebla y en particular la Unión de Ejeños Forestales de Chignahuapan, que dentro de sus actividades productivas y de conservación de los recursos forestales, durante el año 2008 llevaron a cabo el Primer Foro Forestal Chignahuapan. También destaca la Asociación Regional de Silvicultores de la Mixteca Poblana, A. C., que está conformada por ganaderos y ha desarrollado el aprovechamiento de la fauna silvestre regional, principalmente el venado cola blanca (Odocoileus virginianus) en UMAs extensivas de 32 municipios de la región Mixteca, situada al sur del estado, donde destacan los municipios de Chiautla, Totolepec de Gro., Axutla, Ixcamilpa de Gro. Zacapala y Jolalpan.

La Reserva de la Biosfera Tehuacán–Cuicatlán desarrolla la gestión para el manejo de este espacio natural rico en diversidad biológica y cultural pero complejo desde el punto de vista social, debido a las fuertes limitaciones a que las somete la producción “convencional” y las condiciones climatológicas y geomorfológicas de la región. De igual forma, la presencia de al menos ocho grupos étnicos con distintos procesos de ocupación del territorio y uso de los recursos naturales ha moldeado una serie de
paisajes antropizados que contrastan con los paisajes naturales que persisten en la región.

La escasez del agua dada por la sombra orográfica que ocasiona la Sierra Negra sobre los valles de Tehuacán, Zapotitlán y la Cañada Oaxaqueña han permitido el desarrollo de una rica flora xerófita que ha sido considerada como una de las más importantes a nivel nacional y mundial, dado el alto número de especies endémicas, sobre todo en el grupo de las cactáceas. La Comisión Nacional de Áreas Naturales Protegidas (CONANP) ha propiciado que la gestión del área protegida esté encaminada a resolver asuntos básicos como la captación y retención de agua, mejorar la producción a través de prácticas de conservación del suelo e impulsar el uso y aprovechamiento de especies de plantas locales. También se ha promovido la conformación y capacitación de grupos de hombres y mujeres artesanos que ofrezcan mayor calidad en sus productos para tener mejores oportunidades de comercialización, dándose impulso a proyectos de aprovechamiento del paisaje y no extractivo de los recursos naturales, en lo que se ha dado en llamar “Turismo de Naturaleza”.

La limitación de los recursos financieros obliga a establecer estrategias de gestión que permitan involucrar a diversos actores de los tres niveles de gobierno y de la sociedad civil para que contribuyan en los distintos procesos de conservación impulsados en el Área Natural Protegida (ANP); en este proceso se ha logrado involucrar a organizaciones como la Benemérita Universidad Autónoma de Puebla, la Universidad Popular Autónoma de Puebla, los tecnológicos de Tehuacán, Tecamachalco y Zacapoaxtla, así como la tradicional presencia de la Universidad Nacional Autónoma de México (UNAM), el Instituto Politécnico Nacional y la Universidad Autónoma Metropolitana; de igual forma están colaborando la Comisión Nacional Forestal (Gerencias Regionales del Golfo de México y Pacífico Sur), la Secretaría de Sustentabilidad Ambiental y Ordenamiento Territorial de Puebla (antes Secretaría del Medio Ambiente y Recursos Naturales), el Instituto Estatal de Ecología de Oaxaca, las Secretarías de Turismo de Oaxaca y Puebla, el Fondo Nacional de Artesanías, la Comisión Nacional de Zonas Aridas, la Comisión Nacional para el Desarrollo de los Pueblos Indígenas (CDI), así como organismos locales de la sociedad civil, como la Fundación Cuicatlán para la Reserva de la Biosfera, Mazamitli A. C. Alternativas y Participación Social, el Instituto de Hidroponia Simplificada, y las nacionales, como la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), El Fondo Mexicano para la Conservación de la Naturaleza, Pronatura Chiapas, Pronatura Veracruz; recientemente participan también las agencias internacionales como Rare Center for Tropical Conservation, la Agencia Española de Cooperación Internacional y Peace Corps de los Estados Unidos de America.

SECTOR ACADÉMICO

Oscar Agustín Villarreal Espino Barros

Las instituciones de educación superior han tenido una importante contribución en materia de conservación del medio ambiente; en este sentido hay un total de 15 universidades y tecnológicos que ofertan programas académicos relacionados con el medio ambiente y el desarrollo sustentable. La oferta académica consta de 29 licenciaturas (Cuadro 11.2). En materia de posgrados, se ofrecen un total de nueve maestrías, en seis instituciones. Los programas de doctorado relacionados con los temas ambientales son dos: el primero en Ciencias Ambientales, por parte del Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla (BUAP); el segundo, en Desarrollo Agrícola Regional, por el Colegio de Posgraduados (COLEGOS), Campus Puebla. Además, la BUAP ha impulsado proyectos de investigación; de ellos, los relacionados con el medio ambiente y el desarrollo sustentable se ubican en cuatro líneas generales de investigación:

- Agua, Aprovechamiento Sostenible y Desarrollo Social
- Sustentabilidad de los Sistemas Agropecuarios y Forestales
- Ahorro de Energía y Energías Alternativas
- Universidad y Medio Ambiente

Hay que señalar la labor en favor de la fauna silvestre con potencial cinegético, ya que existen tres grupos de investigadores que realizan funciones de investigación, transferencia de tecnología, extensionismo, fomento y asesoría. Por parte de la BUAP destacan los grupos de la Facultad de
Cuadro 11.2 Instituciones de educación superior con oferta en aspectos del uso de la biodiversidad

<table>
<thead>
<tr>
<th>Institución</th>
<th>Licenciatura</th>
<th>Maestría</th>
<th>Doctorado</th>
<th>Otros</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUAP</td>
<td>Biología</td>
<td>Ciencias Ambientales</td>
<td>Ciencias Ambientales</td>
<td>Instituto de Ciencias</td>
</tr>
<tr>
<td></td>
<td>Ingeniería Ambiental</td>
<td>Ingeniería Ambiental</td>
<td>Microbiología</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeniería Agroforestal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeniería Agrohidráulica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeniería Agronómica y Zootecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicina Veterinaria y Zootecnia</td>
<td>Medicina Veterinaria y Producción Animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPAEP</td>
<td>Ingeniería Ambiental</td>
<td>Agronegocios</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeniería Agropecuaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicina Veterinaria y Zootecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDLAP</td>
<td>Biología</td>
<td>Biotecnología</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIAP</td>
<td></td>
<td>Estudios Regionales en Medio Ambiente y Desarrollo</td>
<td>Departamento de Ciencias e Ingenierías</td>
<td></td>
</tr>
<tr>
<td>COLPOS</td>
<td></td>
<td>Desarrollo Agrícola Regional</td>
<td>Desarrollo Agrícola Regional</td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>Ingeniería Agronómica y Fitotecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeniería Agronómica y Zootecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicina Veterinaria y Zootecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URM</td>
<td>Ingeniería Agronómica en Fitotecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeniería Agronómica en Zootecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicina Veterinaria y Zootecnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPP</td>
<td>Biotecnología</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIDES</td>
<td>Ingeniería Ecológica</td>
<td>Ciencias y Medio Ambiente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Administración y Gestión Ambiental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeniería Agronómica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTP</td>
<td>Tecnología Ambiental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>Ingeniería Ambiental</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
Medicina Veterinaria y Zootecnia (FMVZ) y la Escuela de Biología, además del grupo del COLPOS, Campus Puebla (López, et al. 2008; Villarreal, et al. 2008 b). La FMVZ de la BUAP ha venido organizando el Simposio sobre Fauna Cinegética de México, evento académico nacional que busca la conservación de los recursos naturales y generación de beneficios socioeconómicos, utilizando como herramienta la caza deportiva y el ecoturismo.

ORGANIZACIONES NO GUBERNAMENTALES

Oscar Agustín Villarreal Espino Barros
Blanca Cantú Montemayor

El sector de las Organizaciones no Gubernamentales (ONG’s) está representado en forma general por el Consejo Estatal de Ecología que agrupa a un gran número de colaboradoras; otra es la Fundación PRODUCE Puebla, A. C. (FUPPUE); el Consejo trabaja en temáticas de desarrollo urbano, industrial, agropecuario y silvícola. Esta fundación tiene como objetivo servir como modelo de asociación civil que vincula al sector público con la sociedad, para responder a las necesidades de los productores agropecuarios. También, desarrolla y financia proyectos para beneficiar al sector rural poniendo énfasis en las comunidades con alta marginación y pobreza, además de encaminar a los productores visionarios hacia una cultura empresarial.

Los proyectos más importantes de FUPPUE son la transferencia de tecnología y el desarrollo técnico principalmente en: linaloe (Bursera aloexylon) y nopales (Opuntia spp.). Otras ONG’s que han destacado en el aspecto ambiental son: el Patronato Puebla Verde, la Asociación Ornitológica Ambiental (Hutzilcoatl, A. C.), Amigos de la Tierra, Movimiento de la Personalidad Ecológica, Mazamiztlí, Oikos, Semillitas de la Paz, Altepétl, Sociedad de Arquitectos Ecologistas de México, Jardín Botánico “Helia Bravo Hollis”, Africam Safari, Parque Loro, Villa Atl, American Forrest Foundation México, Ecocel, Jardín Etnobotánico Francisco Peláez, Pro-Cholula, Reserva Ecológica Zapotecas, Colegio de Profesionales en Medio Ambiente y Desarrollo, Mexacate, y Alternativas y Procesos de Participación Social, entre otras. Esta última ha fomentado sobre todo la conservación y uso sustentable del agua, principalmente en el sureste del estado, realizando
en muchos casos trabajos de colaboración con la Reserva de la Biosfera Tehuacán-Cuicatlán (RBT-C), organismo dependiente de la Comisión Nacional de Áreas Naturales Protegidas (CONANP).

CONCLUSIONES Y ESTRATEGIAS
Oscar Agustín Villarreal Espino Barros

El estado de Puebla, debido a su ubicación geográfica donde confluyen las regiones biogeográficas Neártica y Neotropical, ofrece una amplia gama de posibilidades para el aprovechamiento sostenible de su vida silvestre, dada su variada geografía y biodiversidad, que va desde las más altas cumbres del país como el Citlaltépetl (5 747 msnm), el Popocatépetl (5 452 msnm), el Iztaccihuatl (5 286 msnm), el Volcán Negro o Tiltépetl, (4 600 msnm) y la Malinche (4 416 msnm), situados en el Eje Neovolcánico Transversal, hasta las partes más bajas de la Sierra Nororiental (Tenampulco, 80 msnm) y la Sierra Negra (Paso Atzihuatl, 87 msnm) (INEGI. 2000). En su territorio existen desde bosques de pinos y encinos (Quercus), hasta bosques mesófilos de montaña y tropicales perenéfílos, subcaducifolios y caducifolios, además de matorrales xerófilos, vegetación acuática y pastizales de altura (Rzedowski, 1981). Por lo tanto, los habitantes de las diferentes regiones del estado requieren conocer su biodiversidad, para conservarla y aprovecharla en forma racional y sostenida, mediante la diversificación productiva, lo que permitirá a futuro no sólo conservar el medio ambiente sino generar beneficios económicos y sociales.

Las sierras Nevada (Ixta-Popo), Norte, Nororiental y Negra tienen un gran potencial forestal; el Totonacapan (Sierra Nororiental) y la Mixteca ofrecen enormes posibilidades silvícolas y cinegéticas. Sin embargo, habrá que tener cuidado en la conservación y el manejo apropiado de esa biodiversidad. Algunas amenazas, además de la deforestación por el avance de las fronteras urbana, industrial y agropecuaria, es la introducción de plantas y animales de especies y subespecies (razas geográficas) exóticas, es decir, ajenas a los ecosistemas regionales, como el ciervo rojo (Cervus elaphus), sika (Cervus nippon), ciervo axis (Axis axis), gamo o fallow deer (Dama dama), venado cola blanca texano (Odocoileus virginianus texanus) y jabalí europeo (Sus scropha), entre otras. La sociedad en su conjunto y los sectores que participamos en esta obra, somos co-responsables de la conservación, manejo y aprovechamiento racional y sostenido de nuestra biodiversidad para el beneficio de la sociedad poblana, México y el mundo.

LITERATURA CITADA

Villarreal, O. 2006. El venado cola blanca en la Mixteca Poblana; Conceptos y métodos para su conservación y manejo”. Benemérita Universidad Autónoma de Puebla; Fundación PRODUCE Puebla, A. C.; Mazamitzli, A. C. Puebla. 191 pp.
Arroyo en Parque Ecoturístico Valle de Piedras Encimadas Zacatlán, Puebla.
Foto: Miguel Ángel Sicilia / Banco de imágenes de CONABIO.
Capítulo 12

HACIA LA ESTRATEGIA ESTATAL DE CONSERVACIÓN Y USO SUSTENTABLE DE LA BIODIVERSIDAD EN EL ESTADO DE PUEBLA

Andrea Cruz Angón, Pedro Antonio López, Blanca Cantú Montemayor, Anabella Handal Silva, Lucía López Reyes, Oscar Agustín Villarreal Espino Barros, Fernando Camacho Rico

Resumen

El estado de Puebla posee una diversidad de las más altas en el país, tanto territorial como biológica y cultural. Además, cuenta con instituciones académicas y una gran cantidad de investigadores que han realizado esfuerzos significativos por estudiar y dar a conocer la biodiversidad característica de esta entidad. La obra, La Biodiversidad en Puebla: Estudio de Estado, es un claro ejemplo del trabajo que durante años han realizado. No obstante, la elaboración de este documento no estuvo libre de dificultades, en el sentido de disponer de información relevante para ser incluida en esta obra. Lo anterior puede deberse a diferentes factores, por ejemplo: a) la escasez de estudios de diversidad para algunos grupos biológicos, regiones o aspectos que amenazan o favorecen su conservación, b) la ausencia de un sistema estatal de información que concentre, actualice y facilite el acceso a la información disponible y c) la falta de participación de todas las dependencias, instituciones o investigadores que limitó el acceso a fuentes importantes de información. En los procesos futuros de actualización de este documento, deberá tomarse en cuenta lo anterior para prever y corregir estas situaciones.

Consideramos que la investigación en torno a la biodiversidad del estado debe incrementarse, así como los apoyos económicos para realizarla. También se debe promover la creación de grupos de trabajo interinstitucionales, multi, inter y transdisciplinarios, lo que llevaría a un manejo más eficiente de los recursos humanos, físicos y financieros disponibles.

En el presente Capítulo se resaltan las principales conclusiones derivadas del análisis de la información de cada uno de los capítulos precedentes de esta obra y se plantean algunas estrategias y acciones que permitan mejorar el conocimiento y aprovechamiento de la biodiversidad en el estado de Puebla. Los Cuadros 1 y 2 resumen algunas de las barreras más importantes y condiciones habilitadoras que deberían retomarse y desarrollarse a mayor detalle durante la formulación de la Estrategia de Conservación y Uso Sustentable de la Biodiversidad de el Estado de Puebla.

El Estudio de la Biodiversidad de Puebla: Principales conclusiones

1) Conocimiento de la biodiversidad: el estado de Puebla ocupa el vigésimo tercer lugar en superficie a nivel nacional, con una extensión territorial de 34 290 km². Además, en el territorio poblano se encuentran representados todos los climas que existen en el territorio nacional.
Cuadro 12.1 Principales barreras identificadas que deberán ser eliminadas para asegurar la correcta instrumentación de políticas públicas en materia de conservación y uso sustentable de la biodiversidad.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Descripción</th>
<th>Acciones necesarias para eliminar las barreras</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normativas</td>
<td>Marco normativo estatal y municipal débil y no armonizado con el federal.</td>
<td>• Fortalecimiento de las instancias que vigilan el cumplimiento de la ley.</td>
<td>Congreso y Ejecutivo estatales, apoyados por dependencias gubernamentales.</td>
</tr>
<tr>
<td></td>
<td>Debilidad en la aplicación y cumplimiento de las leyes. Existe desconocimiento y una interpretación generalmente inadecuada de las normas.</td>
<td>• Fomento una cultura de conocimiento del marco normativo estatal que promueva el cumplimiento de la ley.</td>
<td>SEMARNAT, SSAOT (antes SMIRN).</td>
</tr>
<tr>
<td>Presupuestales</td>
<td>Bajo presupuesto para el tema ambiental (gestión e investigación).</td>
<td>• Gestión con congresos estatales y federales mayor presupuesto para temas ambientales.</td>
<td>Congreso estatal y federal y tres niveles de gobierno.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Capacitación al personal encargado de la toma de decisiones.</td>
<td>SEMARNAT, SSAOT.</td>
</tr>
<tr>
<td>Operativas y de gestión</td>
<td>Presupuesto reducido y falta de personal capacitado o con perfil adecuado.</td>
<td>• Evaluación de capacidades y arreglo institucional y simplificación de estructura.</td>
<td>Instituciones gubernamentales estatales y federales, así como sistema municipal.</td>
</tr>
<tr>
<td></td>
<td>Estructura gubernamental compleja y dispersa, con duplicidad de funciones.</td>
<td></td>
<td>SEMARNAT, SSAOT.</td>
</tr>
<tr>
<td>Tecnológicas</td>
<td>Limitada disponibilidad de tecnologías, poca o nula inversión en investigación.</td>
<td>• Fortalecimiento de las instituciones académicas y de investigación que desarrollen investigación aplicada.</td>
<td>Universidades, Instituciones académicas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gobiernos Federal, Estatal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEMARNAT, SSAOT.</td>
</tr>
<tr>
<td>Económicas</td>
<td>Oportunidades reducidas para nuevos mercados (productos derivados de la biodiversidad), falta de estímulo para la conservación y protección del ambiente.</td>
<td>• Promoción de nuevos mercados y estímulos fiscales.</td>
<td>Poder Ejecutivo y Legislativo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEMARNAT, SSAOT.</td>
</tr>
<tr>
<td>Organizacionales</td>
<td>Falta de comunicación y coordinación de instituciones. Falta de participación social.</td>
<td>• Promoción y consolidación de la transversalidad en políticas públicas, asegurando la incorporación de criterios de conservación del a biodiversidad en los elementos de planeación y desarrollo del estado. Operación de mecanismos eficientes de participación social, en la planeación.</td>
<td>Tres niveles de gobierno, instituciones académicas y sociedad civil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEMARNAT, SSAOT.</td>
</tr>
<tr>
<td>Conducción/ liderazgo</td>
<td>Falta de definición y liderazgo por parte del gobierno.</td>
<td>• Fortalecimiento institucional y definición de actores y funciones.</td>
<td>Tres niveles de gobierno, sector académico y sociedad civil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEMARNAT, SSAOT.</td>
</tr>
<tr>
<td>Mandato/ política</td>
<td>Atomización del sistema de gobierno en cuestiones ambientales.</td>
<td>• Planificación a largo plazo, definición de políticas, actores, responsabilidades y funciones.</td>
<td>Tres niveles de gobierno, sector académico y sociedad civil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEMARNAT, SSAOT.</td>
</tr>
</tbody>
</table>
Cuadro 12.2 Factores habilitadores que deberían reforzarse para asegurar la correcta instrumentación de políticas públicas en materia de conservación y uso sustentable de la biodiversidad.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Descripción</th>
<th>Acciones necesarias para eliminar las barreras</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normativas</td>
<td>Existen normas diseñadas para la protección del ambiente y mecanismos de participación social.</td>
<td>• Mejoramiento del sistema de monitoreo y de aplicación (PROFEPA e instituciones estatales equivalentes) de la normativa.</td>
<td>Gobierno federal y estatal. SEMARNAT, SSAOT</td>
</tr>
<tr>
<td>Presupuestales</td>
<td>Las instituciones encargadas de temas ambientales trabajando con presupuestos propios, SEMARNAT, SEP</td>
<td>• Fortalecimiento de la administración de los recursos, ampliar la promoción de inversiones del sector privado.</td>
<td>Tres niveles de gobierno, estatales y federales. SEMARNAT, SSAOT</td>
</tr>
<tr>
<td>Operativas y de Gestión</td>
<td>Existen instrumentos de política ambiental que facilitan la gestión.</td>
<td>• Fortalecimiento de sistemas gestión, aplicación de instrumentos y de normas.</td>
<td>Tres niveles de gobierno, sociedad civil y academia. SEMARNAT, SSAOT</td>
</tr>
<tr>
<td>Tecnológicas</td>
<td>Existen instituciones académicas consolidadas con personal capacitado.</td>
<td>• Promoción de la inversión y ampliación del presupuesto destinado al desarrollo tecnológico.</td>
<td>Academia y tres sectores de gobierno, SEMARNAT, SSAOT</td>
</tr>
<tr>
<td>Económicas</td>
<td>Existen proyectos y experiencias exitosas de nuevos mercados (comercio justo, certificación de buenas prácticas y buen manejo ambiental) y vías de financiamiento, que deberían adecuarse y replicarse en el estado.</td>
<td>• Fomento a la inversión en proyectos económicos que incorporen consideraciones a la biodiversidad.</td>
<td>Tres niveles de gobierno</td>
</tr>
<tr>
<td>Organizacionales</td>
<td>Existen organizaciones de la sociedad civil.</td>
<td>• Se debe ampliar la participación de sectores marginados de la toma de decisiones.</td>
<td>Tres niveles de gobierno, sociedad civil y academia.</td>
</tr>
<tr>
<td>Conducción/ liderazgo</td>
<td>Existen dependencias de gobierno como CONABIO, INEGI, que han tomado liderazgo en el estado. Otros actores miembro de ONGs y sociedad civil tienen participación importante.</td>
<td>• Se debe de reconocer a actores clave y líderes en el sector ambiental.</td>
<td>Tres niveles de gobierno, sociedad civil y academia.</td>
</tr>
<tr>
<td>Mandato/política</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Otros</td>
<td>-----</td>
<td>• Deben promoverse iniciativas de protección de la diversidad genética y los conocimientos tradicionales (campesinos e indígenas), así como el reparto justo y equitativo de los beneficios derivados de la utilización de los recursos biológicos.</td>
<td>-----</td>
</tr>
</tbody>
</table>
Las características mencionadas anteriormente confieren al estado una amplia gama de ambientes que se traducen en una gran biodiversidad en sus tres niveles: genes, especies y ecosistemas. En la entidad se han registrado 16 de los 49 tipos de vegetación reportados a nivel nacional, con un total de 6 026 especies reportadas (3.2 % con relación al nacional), las cuales se distribuyen de la siguiente forma: 31 bacterias, 165 protistas, 131 hongos, 4 428 plantas y 1 275 animales, por mencionar los principales grupos. Es importante resaltar el alto grado de endemismo característico de la entidad, lo que en parte se debe a la convergencia de las dos grandes regiones biogeográficas: Neártica y Neotropical. Como ejemplos de este endemismo se pueden mencionar a las cactáceas, con 81 especies en el Valle de Tehuacán-Cuicatlán, y a los peces, con 13 especies, de las cuales siete se distribuyen en las cuencas del Balsas y dos más en la del Papaloapan.

Consideramos que algunas iniciativas a desarrollar para fortalecer el conocimiento del capital natural del estado son las siguientes:

- **Impulsar la creación de una Red Estatal de Biodiversidad** para el conocimiento, uso y aprovechamiento de los recursos, que estaría conformada por instituciones y dependencias del estado.
- **Promover la generación de información científica (básica y aplicada)** relacionada con la biodiversidad, dando prioridad a los ecosistemas, grupos biológicos y poblaciones en riesgo y/o de mayor importancia socioeconómica, así como a los grupos y regiones cuyo conocimiento es aún escaso en el estado.
- **Actualizar y estandarizar la información cartográfica existente** a escalas con mayor resolución (1:50 000, por ejemplo) que permitan una mejor interpretación y análisis para la toma de decisiones.

2) **Riqueza cultural**: la riqueza natural de Puebla se ha traducido también en riqueza cultural, representada por seis etnias que han aprovechado y domesticado razas, variedades o poblaciones nativas y criollas de especies vegetales que los campesinos actuales aún manejan y aprovechan junto con su entorno natural. Este patrimonio cultural todavía es poco valorado y reconocido. El ejemplo que mejor se conoce y el más representativo de esta relación hombre-diversidad es el maíz, como especie cultivada.

3) **Organización social**: la sociedad y su organización política son factores de presión para la biodiversidad, en el caso de México y particularmente de estados como Puebla, destaca la excesiva división política de su territorio en 217 municipios, que se administran de manera aislada y con poca coordinación, lo que impide la instrumentación de políticas públicas integrales que aseguren la conservación de los ecosistemas. Esto obedece a factores como el modelo de desarrollo actual, que no contempla las condiciones regionales de la entidad, ni toma en cuenta el conocimiento tradicional sobre la biodiversidad.

4) **Marco normativo**: el marco legal en Puebla se encuentra incompleto en materia de medio ambiente y protección a la biodiversidad. Hay instancias en las que tiene poca relación con el derecho penal y no permite instrumentar estrategias justas y equilibradas de sanción. La reglamentación en distintos niveles de gobierno da prioridad al desarrollo urbano e industrial y menor atención al desarrollo sustentable en la entidad.

5) **Amenazas a la biodiversidad**: en contraste con esta riqueza, históricamente y particularmente en la actualidad, el uso de la biodiversidad ha respondido sobre todo, a las necesidades de consumo inmediatas de la población, sin que medie la planeación del territorio con base en su vocación, ni la planeación de las actividades tomando en cuenta los impactos en el medio ambiente. La Estrategia de Conservación y Uso Sustentable de la Biodiversidad de Puebla deberá poner énfasis en la urgencia de cambiar el enfoque de utilización del territorio, la biodiversidad y los bienes y servicios que provee, así como la promoción de aprovechamientos sustentables.

Entre las amenazas más importantes a la biodiversidad destacan la sobrepoblación y el crecimiento de las zonas urbanas, como ocurre en las áreas metropolitanas de las ciudades de Puebla y Tehuacán; también el incremento de la superficial destinada a las actividades agrícolas y ganaderas (perturbación del suelo en 44.5 % de la superficial estatal), que
ha generado cambios radicales en el uso del suelo. Otro factor que afecta a la biodiversidad en la entidad es la introducción de especies exóticas que compiten con, y desplazan a las especies nativas, como en el caso de plantas como el eucalipto, peces como la carpa y la tilapia, aves como la perdiz roja, y mamíferos como el jabali europeo, el ciervo rojo y el venado cola blanca texano, entre otras.

La contaminación del agua, aire y suelo representa otro serio problema en la entidad, debido a que altera la calidad del medio; tal es el caso de la Cuenca del río Atoyac, donde los desechos industriales son vertidos sin previo tratamiento, afectando a las zonas rurales y urbanas de la región.

6) Acciones de conservación: es importante señalar que en el estado existen 15 áreas naturales protegidas (ANPs), tanto federales como estatales, localizadas principalmente en los límites del estado, y que son compartidas con los estados de Veracruz, Oaxaca, Tlaxcala y Estado de México; sin embargo, en estos sistemas de áreas protegidas no se encuentran representados todos los ecosistemas del estado, como son el bosque tropical caducifolio y el bosque mesófilo de montaña, localizados en las regiones Mixteca y Sierra Norte (Totonacapan), respectivamente. Actualmente, el programa de ordenamiento territorial impulsado por el gobierno del estado y en colaboración con numerosas instituciones académicas y de investigación, tiene como objetivo establecer la vocación natural para el uso del suelo en los diferentes ecosistemas, armonizando las actividades productivas y de crecimiento de los núcleos de población.

Consideramos que algunas iniciativas de conservación del capital natural del estado son:

- incrementar las colecciones y el número de especies y de accesiones bajo resguardo ex situ e in situ, así como mantener las ya existentes.
- aumentar el número de áreas susceptibles a conservar, dando prioridad a ecosistemas y especies poco representados en el sistema de áreas de protección actual.

7) Educación y cultura ambiental: las acciones de educación ambiental realizadas en el estado han permitido una sensibilización incipiente de la sociedad para que actúe en pro de la conservación y el uso sustentable de los recursos naturales. La consolidación y permanencia de esta herramienta es clave para poder construir una sociedad consciente de los beneficios que le otorga la biodiversidad y de las acciones que debe implementar para conservarla. Para ello es necesario promover la actualización de programas dirigidos a la educación formal e informal, desde el nivel básico hasta el superior, adecuando esta herramienta a las condiciones y necesidades de la entidad determinadas por diagnósticos adecuados.

8) Gestión ambiental: en el sector público, tanto estatal como federal, las instituciones encargadas de tutelar la biodiversidad han desarrollado capacidades e instrumentado programas cuyo objetivo es la conservación y el uso sustentable de la biodiversidad. Queda claro que aunque los avances pueden resultar significativos, no son suficientes para detener y revertir el deterioro ambiental que enfrenta el estado. El fortalecimiento paulatino y el desarrollo de nuevas capacidades institucionales deberá verse reflejado en los impactos positivos que la aplicación de programas, basados en la información disponible más adecuada, que se tenga sobre el capital natural del estado.

En lo que respecta al sector privado, se concluye que la gestión ambiental sustentable es aún incipiente, especialmente en el sector primario, donde las asociaciones de productores necesitan desarrollar capacidades de gestión, producción sustentable y diversificación de mercados.

Las instituciones de educación superior han tenido una importante contribución en materia de conservación del medio ambiente, lo que se refleja en la oferta académica en materia ambiental que brindan 15 instituciones. En cuanto a las Organizaciones No Gubernamentales (ONGs) que se dedican a temas de biodiversidad, una gran parte de ellas están representadas en el Consejo Estatal de Ecología.

Consideramos que algunas estrategias de gestión de la biodiversidad deberían incluir los siguientes factores:

- Orientar la política hacia un desarrollo sustentable en la entidad poblana.
- Vincular los beneficios de la biodiversidad con la sociedad.
- Fomentar el ecoturismo.
• Aplicar y dar seguimiento al marco legal relacionado con el cuidado de la biodiversidad.

• Otorgar jurisdicción y poderes a cuerpos públicos y a las comunidades locales para la conservación de la biodiversidad, y promover espacios para la participación pública.

• Promover una mayor participación académica y de la sociedad en general, en la revisión y diseño de leyes y reglamentos en materia ambiental.

Finalmente, esperamos que el próximo proceso de elaboración de la Estrategia de Conservación y Uso Sustentable de la Biodiversidad de Puebla, refuerce los esquemas de colaboración interinstitucional iniciados durante la elaboración de este estudio. La Estrategia deberá sentar las bases para que en Puebla se inicie una nueva etapa en la gestión de nuestro capital natural, donde se promueva una armonía efectiva entre el crecimiento y desarrollo que todos deseamos, sin poner en riesgo nuestra diversidad biológica y los servicios ambientales que implica y de los que dependemos. Para esto deberemos unir esfuerzos para construir una sociedad informada, consciente y proactiva, con instituciones coordinadas y capaces de enfrentar los retos ambientales, resultantes de los actuales patrones de consumo, crecimiento y desarrollo de nuestras sociedades. Los autores de este estudio hemos puesto un pequeño grano de arena que con esfuerzo y tenacidad deberá de rendir los frutos que la sociedad demanda.
Dra. Agustina Rosa Andrés Hernández

Síntesis CV
Realizó estudios profesionales en la Universidad Nacional Autónoma de México, el doctorado en botánica por el Colegio de Postgraduados; ha realizado estudios en sistemática con datos estructurales y desarrollo de plantulas en los géneros *Bursera* (Burseraceae), *Rhus* (Anacardiaceae), así como el estudio biogeográfico de dichos grupos. Actualmente trabaja en la sistemática y biogeografía del género *Zanthoxylum* (Rutaceae), con base en la anatomía foliar, floral y maderas. También colaboró en el estudio de la Diversidad florística del estado de Puebla.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: arahdm@yahoo.com.mx

Dr. Pedro Antonio López

Síntesis CV

Institución: Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico: palopez@colpos.mx

Dr. Agustín Aragón García

Síntesis CV
Obtuvo el grado de Doctor en la Benemérita Universidad de Puebla. Es profesor-Investigador del Departamento de Agroecología y Ambiente del Instituto de Ciencias, BUAP. Director ejecutivo de 11 proyectos financiados por el Consejo Nacional de Ciencia y Tecnología, Secretaría del Medio Ambiente y de Recursos Naturales, Fundación Produce, entre otros. Es autor de 15 artículos científicos publicados en revistas internacionales. Autor de un libro y coeditor de 10 libros. Por su trayectoria académica es Premio Estatal de Ciencia y Tecnología.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: aragon@siu.buap.mx

Lic. José Cristobal de Jesús Arreguín García

Síntesis CV
Realizó la Licenciatura en Medicina Veterinaria y Zootecnia y la Maestría en Ciencias Ambientales en la BUAP; actualmente es pasante de la Maestría de Estudios Regionales, Medio Ambiente y Desarrollo, en la Universidad Iberoamericana, Campus Puebla. En el año 2002, cursó el Diplomado en Planeación Ambiental, en la Universidad Autónoma del Estado de México. Trabaja para el Instituto Nacional de Estadística, Geografía e Informática, tiene el puesto de Jefe del Departamento de Cartografía Temática. Su trabajo consiste en asegurar la cartografía temática digital e impresa.

Institución: Instituto de Estadística, Geografía e Informática (INEGI)
Correo electrónico: jose.arreguin@inegi.org.mx
M.C. Iliana del Carmen Ayala Rodríguez

Síntesis CV
Ingeniera Química por la Universidad Autónoma de Puebla, con maestría en Educación Ambiental por la Universidad de Guadalajara. Fundadora de la organización Amigos de la Tierra, Sección Puebla; de 1988-1993 coordinó los trabajos de educación ambiental del Patronato Puebla Verde A.C. Catedrática en materia ambiental y de desarrollo sustentable de la Universidad Iberoamericana Puebla a partir de 1990 a la fecha; como integrante del Programa Interdisciplinario en Medio Ambiente ha desarrollado los trabajos de Acción Ambiental Universitaria, incorporación de la dimensión ambiental en el currículo, formación de promotores ambientales juveniles y gestión comunitaria del agua.

Institución Universidad Iberoamericana Puebla (UIA)
Correo electrónico iliana.ayala@iberopuebla.edu.mx

Ing. Beatriz B. Beristain Noriega

Síntesis CV
Actualmente estudia la Maestría en Educación en la Universidad Autónoma del Estado de Puebla. Egresada del Instituto Tecnológico de Orizaba de la carrera de Ingeniería Química, cuenta con un Diplomado en educación ambiental y desarrollo sustentable en la BUAP. Trabajó seis años como coordinadora de educación ambiental en el zoológico de Africam Safari, posteriormente 3 años como jefa de educación ambiental en el H. Ayuntamiento de Tehuacán y de 2002 a la fecha como coordinadora de cultura para la conservación en la Reserva de la Biósfera Tehuacán-Cuicatlán.

Institución Reserva de la Biósfera Tehuacán-Cuicatlán
Correo electrónico bberistain_noriega@hotmail.com

M.C. Yadira Bock Sánchez

Síntesis CV
Egresada de la carrera de Ingeniería Agronómica con Especialidad en Economía de la UACH, en 1971; cuenta con una Maestría en Ciencias en Estrategias para el Desarrollo Agrícola Regional del CP (1995) y actualmente candidata a Doctor de la UPM, con trabajos de evaluación de programas institucionales en varios estados de la república, investigaciones de mercado, de contaminación por hidrocarburos y de indicadores de sustentabilidad, desarrollo de cursos sobre el medio ambiente para la SEMARNAT. Ha publicado 2 estadísticas de producción de distritos de riego, 8 de evaluación de programas agropecuarios, 5 artículos en reuniones científicas, un libro sobre el ambiente y 16 artículos de divulgación sobre temas ambientales.

Institución Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico bock@colpos.mx

M.C. Sara Bonilla Meza

Síntesis CV
Bióloga egresada de la BUAP, con Maestría en Ciencias Ambientales con orientación en Restauración Ecológica por parte de la UNAM. Asesor del uso del lino acuático en el Megaproyecto Rehabilitación de Valsequillo. Actualmente dirige tesis encaminadas a la ecología y restauración de sistemas acuáticos. Ha publicado artículos en revistas internacionales indexadas. Ha establecido vínculos de cooperación con fundaciones e iniciativas privadas para el establecimiento de cooperativas sociales; actualmente es colaboradora de proyectos CONACYT en el laboratorio de ecología y restauración de sistemas acuáticos en la Escuela de Biología de la BUAP.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico saborme@gmail.com

M.C. Fernando Camacho Rico

Síntesis CV

Institución Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)
Correo electrónico fcamacho@conabio.gob.mx / fernandocamachor@gmail.com
Dr. Julio César Camacho Ronquillo

Síntesis CV
Doctor en Ciencias en el área de fisiología de la reproducción, miembro del Sistema Nacional de Investigadores nivel C, profesor-investigador en la FMVZ-BUAP, miembro del padrón de investigadores de la BUAP, perfil PROMEP.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico camacho90@colpos.mx

M.C. Luis Canseco Márquez

Síntesis CV
Realizó la tesis de licenciatura en la Benemérita Universidad Autónoma de Puebla y la de Maestría en la Fac. de Ciencias de la UNAM, ha participado en 20 congresos científicos, 6 talleres y dos diplomados, ha participado en 12 proyectos de investigación, impartido varios cursos de Biogeografía y Herpetología en la Facultad de Ciencias de la UNAM y en la Universidad Simon Bolivar, también ha publicado 41 artículos científicos en revistas nacionales e internacionales; dos artículos de divulgación, 5 capítulos de libros, una guía de campo y editado un libro. Ha titulado a cuatro alumnos a nivel licenciatura y dos más están en proceso.

Institución Universidad Nacional Autónoma de México (UNAM)
Correo electrónico lcanseco@gmail.com

Biól. Blanca Cantú Montemayor

Síntesis CV
Bióloga, egresada de la Escuela de Biología de la Benemérita Universidad Autónoma de Puebla, cuenta con un diplomado en Auditoria Ambiental. Ha participado en diferentes proyectos de investigación relacionados con temas de contaminación y toxicología. Laboró en la Secretaría del Medio Ambiente y Recursos Naturales (SMRN) del Gobierno del estado de Puebla, en el área de Planeación Ecológica, donde realizó actividades de planeación, coordinación y ejecución de programas ambientales para el Estado. Desde el 2008 ha sido el Enlace Operativo para la elaboración del Estudio y Estrategia de la Biodiversidad de Puebla.

Institución Secretaría del Medio Ambiente y Recursos Naturales del Gobierno del Estado de Puebla (SMRN)
Correo electrónico beceme20@hotmail.com

M.C. Moisés Graciano Carcán Montiel

Síntesis CV
Egresado de la Fac. de Ciencias Químicas de la BUAP, cuenta con Maestría en Edafología en el Colegio de Postgraduados, actualmente es Profesor-Investigador del Instituto de Ciencias, es miembro del Laboratorio de Microbiología de Suelos, donde estudió aspectos relacionados con bacterias fijadoras de nitrógeno y bacterias solubilizadoras de fosfatos, es coresponsable del programa de biofertilizantes.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico mgcarca@siu.buap.mx

Dra. Hortensia Carrillo Ruíz

Síntesis CV

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico hortensia.carrillo@gmail.com
M.C. Dolores Castañeda Antonio

Síntesis CV
Químico Farmacobiólogo egresado de la BUAP, con especialidad en Ingeniería Ambiental (ITP) y Microbiología Sanitaria (BUAP). Con Maestría en Ingeniería Ambiental (ITP). Expería analista en agua, foliares y suelo en análisis fisicoquímicos, metales y cromatográfico, experiencia en sistemas de calidad en laboratorio bajo normatividad. Es colaborador en el área de Microbiología de suelos del Instituto de Ciencias de la BUAP y docente de la Fac. de Ingeniería Química, BUAP.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico castanedaantonio@hotmail.com

Biól. Carlos Castañeda Hernández

Síntesis CV
Biólogo egresado de la Esc. de Biología de la BUAP. Actualmente desarrolla proyectos para el conocimiento de la Herpetología del Estado de Puebla y proyectos de divulgación.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico drako_2021@hotmail.com

Dr. Jorge Alejandro Cebada Ruiz

Síntesis CV
Egresado de la Escuela de Biología de la BUAP. Realizó su Maestría en Ciencias Fisiológicas en el Instituto de Fisiología, BUAP. Realizó el Doctorado en la Especialidad de Fisiología en el Centro de Investigación y Estudios Avanzados del IPN. Actualmente es Director de la Escuela de Biología de la BUAP. Ha presentado publicaciones en revistas arbitradas, participado en congresos nacionales e internacionales y dirigido tesis de licenciatura.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico jcebadac@yahoo.com.mx

Biól. Amparo Belgica Cerón Carpio

Síntesis CV
Estudió la licenciatura en la escuela de Biología BUAP. Laboró por seis años consecutivos en el Herbario y Jardín Botánico BUAP, encargada de la colección de Pteridófitas del Herbario, así como del procesamiento de ejemplares de herbáceos y de la base de datos Biótica 4.1 CONABIO. Realizó estudios pteridoflorísticos del estado de Puebla, en municipios como Tlatlaquitepec, Tixtla, Huachinango, Juan Galindo, entre otros. Publicaciones en revista Polibotánica y boletín AMARANTO, AMIB, A.C. Actualmente está cursando la Maestría en Ciencias de la Educación, Universidad de Camagüey Cuba-BUAP.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico amparo_belgicac@hotmail.com

Biól. Diego Cervantes García

Síntesis CV
Licenciado en Biología por la Facultad de Ciencias de la UNAM con estudios posteriores de especialización, nacionales e internacionales así como diplomados, cursos y talleres. Ha realizado trabajos en temas de acuacultura, áreas naturales protegidas, desarrollo sustentable, derechos humanos y medio ambiente, ordenamiento ecológico, conservación, administración y legislación ambiental, seguimiento y evaluación de proyectos, evaluación de impacto ambiental de obras y actividades en ANPs, Prospectiva de la Educación Superior Frente a los Retos del Desarrollo Sustentable, formadores para la reconversión productiva, políticas de desarrollo social y planeación, SIGs y educación ambiental.

Institución Secretaria del Medio Ambiente y Recursos Naturales (SEMARNAT), Delegación Puebla
Correo electrónico educacion@puebla.semarnat.gob.mx
Dr. David Cibrián Tovar

Síntesis CV
Realizó la licenciatura en Biología en el IPN, la Maestría en Ciencias en Entomología y Doctorado en Entomología, ambos en el Colegio de postgraduados. Profesor-Investigador de tiempo completo desde 1972 en la DICEO-UACH, con más de 100 cursos impartidos en licenciatura y postgrado. Autor de 3 libros sobre parasitología forestal, autor de más de 60 artículos científicos sobre Parasitológia Forestal, director de tesis de más de 90 profesionistas (licenciatura, maestría y doctorado). Ha recibido dos veces el Premio Nacional Forestal, miembro del SNI hasta 2007.

Institución: Universidad Autónoma Chapingo (UACH)
Correo electrónico: dcibrian48@gmail.com

Biól. Víctor Javier Cid Vázquez

Síntesis CV
Lic. en Biología, egresado de la Escuela de Biología de la BUAP; actividades laborales: “Consultoría, Sierra Consultores Ambientales”. Laboró en la Secretaría del Medio Ambiente y Recursos Naturales en el área forestal.

Institución: Secretaría del Medio Ambiente y Recursos Naturales del Gobierno del Estado de Puebla (SMRN)
Correo electrónico: javiercid_7@hotmail.com

M.C. Ana Gabriela Colodner Chamudis

Síntesis CV

Institución: Instituto Tecnológico Superior de Zacapoaxtla
Correo electrónico: agabicol@hotmail.com

Biól. José Luis Contreras Jiménez

Síntesis CV
Licenciado en Biología egresado de la Facultad de Ciencias de la UNAM, 1992. Profesor-investigador Asociado C, TC definitivo, Curador del Herbario de la BUAP 1994. Ha participado en más de 20 proyectos nacionales e internacionales en el área botánica; profesor de diversos cursos de licenciatura en el área botánica tanto en la UNAM como en la BUAP. Ha dirigido cuatro tesis de licenciatura, revisor y jurado en 10 tesis también de licenciatura. Ha tenido la dirección de más de cien alumnos de Servicio Social, dictado más de cien conferencias relacionadas con temas botánicos, ha participado en más de cincuenta congresos nacionales e internacionales. Autor y coautor de 20 artículos científicos publicados en revistas nacionales e internacionales.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: jcontras@siu.buap.mx

Maria Agustina Costa Genazzi

Institución: Integración y Análisis de la Información. Dirección de estadística, regional oriente, INEGI
Correo electrónico: maria.costa@inegi.org.mx
Dra. Andrea Cruz Angón

Síntesis CV
Bióloga de la Universidad Michoacana. Obtuvo el grado de Doctor en Ciencias en Ecología y Manejo de Recursos Naturales por parte del Instituto de Ecología, A. C. Trabajó como asistente y coordinador de proyectos de investigación del Centro de Aves Migratorias del Smithsonian Institution (SII) en Chiapas, Xalapa y Guatemala. Participó como evaluadora ambiental de programas de certificación de buen manejo forestal en comunidades y ejidos forestales de México. Trabajó en la Gerencia de Protección Ambiental de la Dirección Corporativa de Operaciones de Pemex. Actualmente se desempeña como Coordinadora de Enlace y Estrategias de Biodiversidad de la Conabio. Ha publicado cerca de una decena de artículos en revistas científicas internacionales arbitradas y algunos de divulgación. Fue Coordinadora y Editora General de Biodiversidad en Veracruz: Estudio de Estado.

Institución: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)
Correo electrónico: acruz@conabio.gob.mx / angonac@gmail.com

Dra. Mariana del Socorro Cuautle Arenas

Síntesis CV

Institución: Universidad de las Américas-Puebla (UDLA)
Correo electrónico: mcuautle2004@hotmail.com

Est. Biól. Eunice Cuautle Hernández

Síntesis CV
Estudiante de la Escuela de Biología de la BUAP, quien realizó servicio social con la M. en C. Concepción López T., en el proyecto flora y fauna de dos municipios de la Mixteca Poblana, también participó con el trabajo “Evaluación de los daños ocasionados por el murciélago hermatófago”. Colaborador en el monitoreo de fauna silvestre con impacto ambiental, participó en el área de agroindustrialización del árbol Lináloé (Fundación PRODUCE). Así también como asistente en cursos de zoología.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: euta_nasia@hotmail.com

Ing. Raúl Cuéllar Ramírez

Síntesis CV

Institución: Boletín Ventana Ambiental
Correo electrónico: don_importante@yahoo.com.mx

M.C. Marisela De Niz Robles

Síntesis CV
Profa. de Educación Preescolar de la Escuela Normal Bertha Von Glümer; Lic. en Educación Primaria por la Universidad Anáhuac; Campus Puebla, M. en C. de la Educación por el Instituto de Estudios Universitarios, Campus Puebla, Directora Académica de 2005-2008; Directora de Títulación del 2008 a la fecha. Pone un en el 1er. Congreso de Conferencia de Educación Ambiental en la Esc. de Biología de la BUAP, ponente en el Primer Coloquio Nacional de Estudiantes y Programas Académicos de Educ. Ambiental, de la IPN; ponente en el seminario de Investigación en Educ. Ambiental de Mérida, Yucatán; Sinozal en el Concurso “Cuidemos la Casa”, organizado por el municipio de Puebla.

Institución: Instituto de Estudios Universitarios (IEU)
Correo electrónico: mariseladeniz@hotmail.com / mdenis@sistemaieu.edu.mx
Dr. Claudio Delgadillo Moya

Síntesis CV
Investigador Titular “C” de la UNAM, actualmente jefe de Departamento de Botánica, Director de tesis tanto de Doctorado, Maestría y Licenciatura; cuenta con publicaciones en revistas indexadas tanto nacionales como internacionales, curador y responsable de la colección de Briofitas del MEXU.

Institución Universidad Nacional Autónoma de México (UNAM)
Correo electrónico moya@ibiotolgia.unam.mx

Dra. Adriana Delgado Alvarado

Síntesis CV

Institución Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico ada@colpos.mx

Dr. Ramón Díaz Ruiz

Síntesis CV

Institución Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico adah@colpos.mx

M.C. Héctor Eliosa León

Síntesis CV
Biólogo y Maestro en Ciencias, egresado de la Fac. de Ciencias, UNAM. Ha participado en 10 congresos nacionales y ha sido organizador de una reunión nacional de herpetología, un congreso nacional de zoología y tres cursos de educación continua; responsable de un proyecto de investigación. Profesor-Investigador de la Esc. de Biología de la BUAP, impartiendo los cursos de Biología Animal II, Zoología de Vertebrados, Sistemática y Biogeografía. Ha publicado siete artículos científicos en revistas de licenciatura y ha sido síndico en 22 exámenes profesionales.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico heliosa@ibuap.mx

M.C. Alejandra Paula Espinosa Texis

Síntesis CV
QFB, egresada de la BUAP, M. en C. Biomédicas de la UNAM, con especialidad en Micología Médica, principalmente en micosis subcutáneas. Académico de las maestras en Microbiología y Ciencias Ambientales de la BUAP. Investigadora titular del Laboratorio de Micología, del CICM-BUAP Directora de 40 tesis de licenciatura y 4 de maestría.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico paula.espinosa@icbuap.buap.mx
Dr. Antonio Fernández Crispín

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: anfern@siu.buap.mx

Biól. Elizabeth Adriana Flores Jiménez

Síntesis CV

Institución: Secretaría del Medio Ambiente y Recursos del Estado de Puebla (SMRN)
Correo electrónico: eadrianafj@hotmail.com

M.C. Francisco Javier V. Franco Guerra

Síntesis CV
Médico veterinario zootecnista egresado de la Universidad Veracruzana. Desempeñó distintos cargos administrativos y de asesor técnico pecuario del gobierno federal en la SARH, BANRURAL e INEGI. Realizó estudios de Posgrado en la Maestría en Nutrición Animal de la FES-UNAM-INIP. Fue Director de la Esc. de Medicina Veterinaria en el área de Producción Animal y Ganadería Ecológica en la Universidad de Córdoba, España, donde fue invitado como Profesor Visitante. Ha publicado diversos artículos científicos en revistas especializadas; actualmente es Profesor-Investigador en la BUAP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: francofj@prodigy.net.mx

Dr. Luis Ernesto Fuentes Ramírez

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: lefuen@siu.buap.mx

Biól. Julio César Gallardo Vásquez

Síntesis CV
Licenciado en Biología por la Benemérita Universidad Autónoma de Puebla (BUAP), recibiendo el reconocimiento por el mejor promedio de la generación y la mención honorífica Cum Laude en su examen de grado; ha participado en diferentes congresos de Botánica y Ecología como asistente y ponente, autor del artículo sobre Fisiología de plantas CAM, ha recibido reconocimientos de la Academia Mexicana de Ciencias y del Espacio Común en Educación Superior (UNAM-ECOES).

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: jcesarg7@yahoo.com.mx
M.C. Gabino García De los Santos

Síntesis CV

Institución: Colegio de Postgraduados (COLPOS), Campus Montecillo
Correo electrónico: bgarcias@conafor.gob.mx

M.C. Marycarmen García Escalona

Síntesis CV
Bióloga egresada de la Universidad de las Américas, Puebla, con especialidad en Ecología. Maestra en Ciencias en Recursos Naturales e internacionales enfocados principalmente a Ecología, Evolución y Conservación de Chiropteros. Actualmente labora en ECOMOS A.C., que se dedica a dar asesorías y capacitación sobre fauna silvestre.

Institución: ConservaZoo, A.C.
Correo electrónico: nataluss@hotmail.com

Dra. Eustolia García López

Síntesis CV
Bióloga por la Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Maestra en Ciencias con Especialidad en Botánica por el Colegio de Postgraduados y Doctora en Manejo de Recursos Naturales por la Universidad de Salamanca, España. Profesora-Investigadora, adscrita al Área de Ciencia Vegetal y Curadoría del Herbario CSAT del Colegio de Postgraduados, Campus Tabasco; ha dirigido y asesorado tesis de estudiantes de licenciatura, maestría y doctorado, además de contar con publicaciones nacionales e internacionales.

Institución: Colegio de Postgraduados (COLPOS), Campus Tabasco
Correo electrónico: rogarlopez@colpos.mx

M.C. Bromio García Sierra

Síntesis CV
Realizó una Maestría en Agroecosistemas Tropicales Sustentables, con orientación en Agroforestales por el Colegio de Postgraduados. Jefe Operativo de la Gerencia Estatal en Puebla de la CONAFOR.

Institución: Comisión Nacional Forestal (CONAFOR)
Correo electrónico: bgarcias@conafor.gob.mx / bgarcias@live.com

Ing. Amb. Analine García Torres

Síntesis CV
Es Ingeniero Ambiental, colaboradora en proyectos de investigación sobre Biotecnología Ambiental como búsqueda de microorganismos en suelos contaminados con hidrocarburos. Ha participado en dos congresos nacionales.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: vainilla_line@hotmail.com
M.C. Uri Omar García Vázquez

Síntesis CV
Biólogo de la Escuela de Biología de la BUAP y M. en C. de la Fac. de Ciencias, UNAM; ha presentado 22 trabajos de investigación en 6 congresos nacionales y 4 en tres congresos internacionales. También ha participado en 7 proyectos de investigación en el área de biología, ha asistido a un curso y una estancia de investigación internacional y dos cursos y una estancia de investigación nacional. Ha fungido como árbitro de dos revistas científicas y participado como editor asociado en una revista de divulgación. Ha publicado 16 notas científicas y 17 más en prensa, 6 artículos y 5 más en prensa y un capítulo de libro. Actualmente se encuentra dirigiendo tres tesis de licenciatura y ha sido sinodal en otras tres.

Institución: Facultad de Ciencias de la Universidad Nacional Autónoma de México (UNAM)
Correo electrónico: urigarcia@gmail.com

Dr. Abel Gil Muñoz

Síntesis CV
Ingeniero agrónomo especialista en Fitotecnia, egresado de la Universidad Autónoma de Chapingo. Cuenta con una Maestría en Ciencias en Genética Vegetal por el Colegio de Postgraduados y es Doctor en Filosofía en Producción y Filosofía de Cultivos por la Universidad Estatal de Iowa, EE.UU. Entre sus aportaciones de investigación figuran el estudio de la aptitud de los maíces criollos para usos tradicionales, estudios de comportamiento agronómico y/o diversidad genética en diferentes regiones del estado de Puebla y Michoacán, así como la documentación de conocimiento tradicional y manejo de los maíces criollos en algunas regiones de Puebla y Oaxaca. Cuenta con poco más de 30 publicaciones sobre los temas ya mencionados y ha dirigido varias tesis de licenciatura, cinco de maestría y una de doctorado en dicha temática. Es Profesor-Investigador del Campus de Postgraduados, Campus Puebla.

Institución: Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico: gila@colpos.mx

Dr. Rosa María González Monroy

Síntesis CV
Profesora-Investigadora de la Escuela de Biología desde 1997, realizó estudios de licenciatura en la Facultad de Estudios Superiores Iztacala y la Maestría en Biología Animal en la Fac. de Ciencias, UNAM, ha participado en diversos Congresos Nacionales e Internacionales, ha sido coordinadora de 2 libros de difusión publicados por fomento editorial de la BUAP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: rosagonzalezm@hotmail.com

Dr. Juan de Dios Guerrero Rodríguez

Síntesis CV
Ingeniero Agrónomo egresado de la Universidad Autónoma Chapingo, maestro en Ciencias en Ganadería del Colegio de Postgraduados, México y grado de Doctor en Filosofía en la disciplina de ciencia animal y vegetal otorgado por la Universidad de Adelaida, Australia. Actualmente es Profesor-Investigador Asociado en el Campus Puebla del Colegio de Postgraduados e imparte la cátedra de Ganadería Semi-Intensiva y participante en el curso Aprovechamiento de recursos fitogenéticos. Es coordinador y responsable del proyecto “Estrategia para impulsar la competitividad de la cadena valor ovino-carne mediante infraestructura e innovación en el Estado de Puebla”, financiado por los fondos Mixtos-CONACyT. Sus intereses de investigación se avocan a los sistemas agrogranaderos, desarrollo de cultivos básicos (leguminosas y cereales) para doble propósito (grano y forraje) y, evaluación de leguminosas forrajeras perennes y anuales tanto nativas como introducidas.

Institución: Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico: rjuan@colpos.mx

C. a Dr. María de Lourdes Guevara Romero

Síntesis CV
Licenciada en Ciencias de la Computación, Graduada en la Benemérita Universidad Autónoma de Puebla con Maestría en Ordenamiento del Territorio. Postulada al Doctorado en Desarrollo Regional. Diplomados en Sistemas de Información Geográfica en el INEGI, dentro del cual se trabaja en Aplicaciones SGI, generación de aplicaciones cartográficas, actualización temática y automatización de diversas tareas geográficas.

Institución: Instituto Nacional de Estadística, Geografía e Informática (INEGI)
Correo electrónico: lourdes.guevara@inegi.org.mx
M.C. Ma. Guadalupe Gutiérrez Mayén

Síntesis CV
Licenciatura en Biología en la ENEP Iztacala, UNAM y Maestría en Ciencias en la Facultad de Ciencias, UNAM. Ha participado en 23 Congresos nacionales e internacionales. Organizadora de 4 reuniones nacionales de herpetología y dos diplomados nacionales de herpetología. Responsable de 4 proyectos de investigación; Profesora-Investigadora de la Escuela de Biología de la BUAP, impartiendo los cursos de Ecología, Métodos de Inv. en Campo, Herpetología y Ecología de Anfibios y Reptiles. Ha publicado 17 artículos científicos en revistas nacionales e internacionales; 6 capítulos de libros, una guía de campo. Dirección de 8 tesis de licenciatura, sinodal en 25 tesis de licenciatura y tres de maestría.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: ggmayen@gmail.com

Dr. Nicolás Gutiérrez Rangel

Síntesis CV
Egresado de la Facultad de Agrobiología “Presidente Juárez” de la Universidad Michoacana de San Nicolás de Hidalgo, Maestría y Doctorado en fruticultura por el Colegio de Postgraduados. Actualmente funciona como Profesor-Investigador Asociado en el Campus Puebla del Colegio de Postgraduados, donde participa como colaborador en tres cursos del Programa “Estrategias para el Desarrollo Agrícola Regional”. Cuenta con más de 40 publicaciones que incluyen resúmenes y memorias de congresos, informes anuales, folletos, tesis, capítulos de libros, artículos en revistas científicas y de otro tipo.

Institución: Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico: ngrangel@colpos.mx

Dra. Anabella Handal Silva

Síntesis CV
Egresada de la Universidad Estatal de Moscú, Rusia, M.V. Lomonosov, donde obtuvo el grado de Ph. D. en Biología con especialidad en Ictiología. Realizó estudios de Posgrado en la Universidad de Managua, Nicaragua en Pedagogía y en la Universidad Nacional Autónoma de México en Toxicología de la Reproducción. Ha impartido cursos curriculares, participado en la elaboración de Programas Académicos y dirigido tesis de Licenciatura, Maestría y Doctorado. Ha sido responsable de 25 proyectos financiados. Ha publicado libros, capítulos de libros y artículos. Actualmente se desempeña como profesor-investigador del Instituto de Ciencias de la BUAP, es la Coordinadora del Depto. de Biología y Toxicología de la Reproducción, Coordinadora de los Programas Regional e Internacional de la Maestría de Educación en Ciencias, es Representante por la BUAP como asesor Técnico en el Proyecto Red Mesoamericana de Recursos Bióticos, Representante de la Maestría de Educación en Ciencias de la BUAP ante la Cátedra Científica de la UNESCO.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: ahandals@yahoo.com.mx

Biól. Norma A. Hernández Corona

Síntesis CV

Institución: Universidad Autónoma de Madrid (UAM)
Correo electrónico: arahernandez@yahoo.com

Biól. A. Yadira Hernández Corona

Síntesis CV
Realizó su tesis de licenciatura sobre la presencia de animales en los libros de texto gratuito. Embajadora de la Lectura enfocada al área de las ciencias. Dirección Primaria (SEP).

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: hecy_71@yahoo.com.mx
Dr. J. Arahón Hernández Guzmán

Síntesis CV
Es Ingeniero Agrónomo Especialista en Suelos, por la Universidad Autónoma Chapingo (1987), Maestro en Ciencias en Producción de Semillas, por el Colegio de Postgraduados en Ciencias Agrícolas (1998) y Doctor en Fitomejoramiento, con orientaciones secundarias en Fisiología de Cultivos y Biología de Semillas por la Universidad de Cornell, Nueva York, USA (2006). La investigación desarrollada y en curso se enfoca al fotomejoramiento, la productividad y la producción de semillas, con énfasis en el cultivo de maíz, aún cuando ha incursionado en otros cultivos, como son: cañahuate, frijol, jitomate, alfalfa y dalia. En colaboración con el SNICS, ha trabajado aspectos relacionados a la descripción varietal, la actualización de las normas mexicanas para la certificación y conservación in situ de razas de maíz en peligro de extinción, particularmente para el caso de la raza Jalá, en Nayarit. Sus líneas generales de investigación en la actualidad son: el mejoramiento del rendimiento y de su estabilidad en maíz; la recuperación de la longitud de mazorca de la raza de maíz Jalá y la agregación de valor en maíz, a través del desarrollo de variedades para diversos usos especiales. Ha participado en docencia y en la asesoría de estudiantes a nivel licenciatura y postgrado, cuenta con publicaciones de fichas técnicas en catálogos de circulación nacional y de artículos científicos en revistas indexadas, así como con publicaciones en memorias de congresos nacionales e internacionales.

Institución: Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico: arahon@colpos.mx

M.C. Jorge Ezequiel Hernández Hernández

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: ovichiv_05@yahoo.com

Lic. Cecilia Leticia Hernández Hernández

Síntesis CV

Institución: Comisión Nacional de Áreas Naturales Protegidas (CONANP)
Correo electrónico: chernandez@conanp.gob.mx / cecilialher@yahoo.com.mx

M.C. Carlos Alberto Hernández Jiménez

Síntesis CV
Biólogo por la BUAP; M. en C. por la UNAM, asistente a seis cursos y diplomados, participante en cinco proyectos de investigación nacionales e internacionales, nueve publicaciones científicas en revistas nacionales e internacionales, seis publicaciones en revistas de divulgación, expositor en 10 congresos, cursos, diplomados y conferencias nacionales e internacionales, tres estancias de investigación en México y Estados Unidos, becario de CONACYT 2006-2008, primer lugar en el concurso de exposición oral.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: acaltetepon22@gmail.com

Dr. J. Santos Hernández Zepeda

Síntesis CV
Doctor en Veterinaria (Programa Ganadería Ecológica, Producción Animal) en la Facultad de Veterinaria de la Universidad de Córdoba, España; ha participado en el rubro Investigación y Divulgación con la presentación de artículos académicos, capítulos de libro y revistas científicas con arbitraje. Ha participado en la organización de eventos académicos a nivel estatal y nacional entre los que destacan las Reuniones Nacionales sobre Caprinocultura, la Reunión de Investigación Pecuaria y la Reunión Nacional de la Asociación Mexicana de Escuelas y Facultades de Medicina Veterinaria y Zootecnia.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: jshdez4@yahoo.com.mx
Dr. B. Edgar Herrera Cabrera

Síntesis CV

Institución Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico behc@colpos.mx

M.C. Beatriz Herrera López

Síntesis CV

Institución Secretaría de Turismo del Gobierno del Estado de Puebla
Correo electrónico beatrizherreralope@gmail.com

Ing. José Luis Huerta Vázquez

Síntesis CV
Ingeniero Forestal egresado de la Universidad Autónoma Chapingo, ha trabajado en Pro-bosque, en programas de Restauración Ecológica de la Delegación de Recursos Naturales, financiado por el Banco Interamericano de Desarrollo, actualmente es Subdelegado de Gestión para La Protección Ambiental y Recursos Naturales de la SEMARNAT, Delegado en el estado de Puebla.

Institución Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT)
Correo electrónico protección@puebla.semarnat.gob.mx

Biól. María Antonieta Isidro Vásquez

Síntesis CV
Actualmente colabora en la Reserva de la Biosfera Tehuacán-Cuicatlán en la elaboración de proyectos relacionados con la etnobotánica, durante 19 años estuvo trabajando en la dirección de botánica en el Instituto de Historia Natural del Gobierno del Estado de Chiapas en temas relacionados con la etnobotánica en grupos étnicos como los zoques. Ha publicado hasta la fecha 12 libros y tres artículos en revistas.

Institución Reserva de la Biosfera Tehuacán-Cuicatlán
Correo electrónico maryisidro@hotmail.com

Dr. Jesús Jasso Mata

Síntesis CV

Institución Colegio de Postgraduados (COLPOS), Campus Montecillo
Correo electrónico jejama@colpos.mx
M.C. Félix Jiménez Bautista

Síntesis CV
Ingeniero Agrónomo en fitotecnia, M. en C. en productividad agropecuaria, asesor técnico en producción bajo invernadero, profesor-investigador en la Dirección General de Educación Tecnológica Agropecuaria (DGTA), jefe del área técnica en DGTA, ha sido presidente del comité estatal de investigación en la DGTA, vicepresidente del Colegio de Ing. Agrónomos en Puebla, director de Desarrollo Administrativo, planeación e informática, ha participado en la integración de los libros de cadenas.

Institución: Secretaria de Desarrollo Rural del Gobierno del Estado de Puebla (SDR)
Correo electrónico: jimenezbf2004@hotmail.com

Est. Biol. Francisco Javier Jiménez Moreno

Síntesis CV
Es alumno de la Escuela de Biología, ha participado en exposiciones temporales en el Museo Universitario (Casa de los Muñecos) y en el Museo de Historia Natural, fue colaborador del aviario de Puebla, ha expuesto en simposios y congresos nacionales de zoología y ornitología desde el año 2003, ha escrito artículos de divulgación para los periódicos El Universal, El Síntesis y El Sol de Puebla, actualmente es miembro de la sociedad mexicana de ornitología.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: pacorex4@hotmail.com

Biól. David Jiménez Ramos

Síntesis CV
Biólogo egresado de la Universidad Autónoma de Puebla, con Especialidad y Posgrado en Desarrollo Rural por la Universidad Autónoma Metropolitana, con diplomado en Evaluación de Impacto Ambiental. Con experiencia de más de 10 años en desarrollo comunitario, con diferentes grupos, organizaciones y comunidades campesinas e indígenas de México, específicamente en el Manejo integral y colectivo de los recursos naturales en unidades para la conservación y aprovechamiento de vida silvestre (UMAs: venado cola blanca, iguana verde y negra), en turismo comunitario y diversificación productiva.

Institución: Atlépetl, Desarrollo Comunitario Productivo y Ambiental. A. C.
Correo electrónico: altetltdavid@gmail.com

Quím. Teresita Jiménez Salgado

Síntesis CV
Es Químico Farmacobiólogo egresada de la BUAP y candidata a Maestra en Ciencias en Edafología, especialidad en Biotecnología. Responsable y colaboradora de proyectos de investigación con apoyo de CONACYT, SEP, SEMARNAT y BUAP en líneas sobre biofertilización de cultivos agrícolas en cultivos anuales y perennes, búsqueda de microorganismos asociados a cultivos de café, caña de azúcar, piña y agave entre otras, y estudios de poblaciones microbianas en suelos contaminados con hidrocarburos. Es asesora de estudiantes de licenciatura y de posgrado, ha presentado ponencias en congresos nacionales e internacionales, así como publicaciones en revistas arbitradas.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: terjesenal@yahoo.com.mx

Dra. Luz del Carmen Lagunes Espinoza

Síntesis CV

Institución: Colegio de Postgraduados (COLPOS), Campus Tabasco
Correo electrónico: lagunesc@colpos.mx
M.C. José David Lara González

Síntesis CV
Ingeniero Civil con estudios de posgrado a nivel maestría en Hidrología Subterránea y también de maestría en Ciencias Ambientales en el área de recursos naturales y ambiente. Candidato a doctor en Ciencias Ambientales en el área de ambiente y desarrollo sostenible. Profesor-Investigador con participación en proyectos de investigación y productivos en evaluación, uso, manejo y conservación de recursos naturales con énfasis en los recursos suelo y agua. Así como en estudios y proyectos de educación ambiental para la difusión y divulgación de la problemática socioambiental del desarrollo.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: filobobos2002@yahoo.com

M.C. Iván Lira Baylón

Síntesis CV
Maestro en Ciencias Sociales de la Administración Turística por parte de la UNIDES, actualmente desempeña las funciones de Director de Desarrollo de la SECTUR en el estado de Puebla. Ha desarrollado estrategias de desarrollo multidisciplinario con entidades de gobierno Federal y Estatal, lo que ha permitido gestionar el desarrollo del turismo de naturaleza en el Edomex, privilegiando la conformación de grupos comunitarios campesinos e indígenas; actualmente se encuentra realizando la tesis para obtener el grado de Maestro en Desarrollo Regional en el Colegio de Puebla, A.C.

Institución: Secretaría de Turismo del Gobierno del Estado de Puebla
Correo electrónico: ivanliraylon@gmail.com

Dr. Ricardo Lobato Ortiz

Síntesis CV
Egresada de la Universidad Autónoma Chapingo, con Maestría en Genética por el Colegio de Postgraduados en 2002 y Doctor en Ciencias (Ph. D.) en Genética y Mejoramiento Genético Vegetal por la Universidad de Cornell, Nueva York, USA. Su área de investigación incluye la combinación de la genética y mejoramiento genético clásicos con las nuevas herramientas de la biología molecular. Ha participado en diversas ponencias de la Sociedad Mexicana de Fitogenética (SOVEFI) y de la Sociedad Americana de Ciencias Hortícolas (ASHS).

Institución: Colegio de Postgraduados (COLPOS), Campus Montecillo
Correo electrónico: rlobato@colpos.mx

M.C. Lucía López Reyes

Síntesis CV
Maestra en Microbiología, orientación en Suelos por el CICM-BUAP. Profesora-Investigadora del Laboratorio de Microbiología de Suelos del ICUAP. Seis publicaciones en revistas científicas, cuatro capítulos de libros editados por la BUAP, 17 publicaciones in extenso, 14 direcciones de tesis de licenciatura y 5 de maestría; revisor de 9 artículos científicos en Terra Latinoamericana, seis proyectos de investigación dirigidos y 11 colaborados.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: lulope@siu.buap.mx

Dr. Higinio López Sánchez

Síntesis CV

Institución: Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico: higiniols@colpos.mx / higiniols@live.com
M.C. Ma. Concepción López Téllez

Síntesis CV
Bióloga egresada de la Universidad Autónoma de Puebla con Especialidad y Posgrado en Ciencias Ambientales por la Universidad Nacional Autónoma de México, es Profesor-Investigador del Laboratorio de Sistemática y Recursos Naturales de la Escuela de Biología de la BUAP, ha realizado trabajo con la biodiversidad de mamíferos en la Reserva de la Biosfera Montes Azules, Chiapas; así como en la diversidad de flora y fauna de Puebla, Tlaxcala y Chiapas, abarcando temas de ecología de poblaciones, comunidades e interacciones biológicas. Participa en proyectos con organizaciones y comunidades campesinas e indígenas específicamente en el manejo integral y colectivo de los recursos naturales y conservación de la biodiversidad, asesora en unidades para la conservación.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: amadea01@hotmail.com / cs001414@siu.buap.mx

Dr. Javier López Upton

Síntesis CV
Ingieniero Agrónomo Especialista en Bosques por la Universidad Autónoma Chapingo, 1981-1985, Maestro en Ciencias Forestales por el Colegio de Postgraduados en Ciencias Agrícolas y un doctorado por la Universidad de Florida. Profesor-Investigador Titular del Colegio de Postgraduados en las Cátedras de Mejoramiento Genético de Árboles Forestales y Manejo de Germoplasma Forestal. Actualmente es miembro del SNI nivel III.

Institución: Colegio de Postgraduados (COLPOS)
Correo electrónico: uptonj@colpos.mx

Biól. Karina Luna Tenorio

Síntesis CV
Licenciada en Biología por la BUAP, miembro-fundador del grupo de Educación Ambiental (EA) de la Escuela de Biología, BUAP; miembro del grupo interinstitucional de EA-UAPAEP-BUAP, ponente y asistente de diversos congresos nacionales e internacionales, organizador del 1er ciclo de conferencias de EA en la Escuela de Biología, evento que reunió a los más importantes investigadores de EA en el Edo. de Puebla. Coordinadora del proyecto de Evaluación de Actitudes y conocimientos ambientales en escolares de primaria del municipio de Puebla, en donde participó la SEP, la BUAP y la UPAEP; estudiante de doctorado en EA por la Universidad de Granada, España.

Institución: Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT)
Correo electrónico: lunita122@hotmail.com

Biól. Ricardo Luría Manzano

Síntesis CV
Es egresado de la Escuela de Biología de la BUAP. Ha presentado trabajos en congresos nacionales, en su tesis de licenciatura trabajó con aspectos reproductivos de la rana Hyla euphorbiacea en la sierra negra de Puebla.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: doumbek@hotmail.com

Dr. Ernesto Mangas Ramírez

Síntesis CV
Biólogo por parte de la UNAM con Maestría en Ciencias Ambientales por parte de la Universidad Autónoma de Puebla (BUAP) y Doctorado en Ciencias del Mar y Limnología (UNAM). Primer graduado en el área de Limnología nivel doctorado en la UNAM, investigador Nacional Nivel I, actualmente dirige proyectos encaminados a la ecología y restauración de sistemas acuáticos. Ha publicado diversos artículos en revistas internacionales indexadas y ha establecido vínculos de cooperación con la Universidad de Oporto (Portugal) y la Universidad de Valencia (España); actualmente es el coordinador de laboratorio de Ecología y Restauración de Sistemas Acuáticos en la Escuela de Biología de la BUAP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: emangasmx@yahoo.com.mx
Biól. Miguel Martínez Fernández

Síntesis CV
Egresado de la Escuela de Biología de la BUAP, con Diplomado en Desarrollo Sustentable y Gestión Ambiental, impartido en la Universidad Iberoamericana, Puebla; ha trabajado en proyectos relacionados con la Ecología y Sistemática de mamíferos mexicanos/estudios alimenticios en Lago-morfos silvestres, etnozoología para mamíferos en el Parque Nac. Pico de Orizaba, Puebla. También ha participado como Inspector especializado en Medio Ambiente, en estudios de Impacto Ambiental, Sistemas de Ingeniería y Control Ambiental y Normatividad; ha participado en diversos congresos y talleres de educación ambiental. Actualmente coordina el depto. de Vida Silvestre en la delegación Puebla, SEMARNAT.

Institución: Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT)
Correo electrónico: miketaxus@hotmail.com / miketaxus@yahoo.com.mx

Dr. Jesús Martínez Vázquez

Síntesis CV
Realizó la Licenciatura de Biología, la Maestría en Ciencias (Biotología) en la UNAM, es profesor-investigador de la Escuela de Biología de la BUAP desde 1996. Ha participado en proyectos sobre los mamíferos de Puebla y Oaxaca, y en Congresos Nacionales e Internacionales, es miembro de la Asociación Mexicana de Mammalogía, A.C. (AMMAC, A.C.), Ammescan Society of Mammalogist (ASM) de EUA, fue coordinador de dos libros sobre métodos de recolección de plantas y animales publicados en la editorial de la BUAP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: jesusmartinez90@hotmail.com

Dra. Rosario Medel Ortíz

Síntesis CV
Bióloga, con Maestría en Ciencias Forestales y Doctorado en Manejo de Recursos por la Universidad Autónoma de Nuevo León; ha publicado más de 25 artículos relacionados con la taxonomía y diversidad de los hongos ascomicetes en revistas nacionales y extranjeras, 4 capítulos de libros, ha impartido cursos de licenciatura y posgrado relacionados con la micología y talleres de taxonomía de Ascomicetes, tanto en México como fuera del país. Investigador del Instituto de Ecología de 1996-2001, Posdoctorado en el Instituto de Ecología (2006-2008). Actualmente es Investigador Titular de tiempo completo del IGF de la Universidad Veracruzana.

Institución: Universidad Veracruzana (UV)
Correo electrónico: romedel@uv.mx

Lic. Hiram Méndez Crisanto

Síntesis CV

Institución: Ayuntamiento del Municipio de Puebla
Correo electrónico: himerc7@yahoo.com.mx

Biól. Roxana Mendoza Cuamatzi

Síntesis CV
Bióloga egresada de la Escuela de Biología de la BUAP, ha participado en proyectos de investigación relacionados con las aves en varios estados del país, así mismo, ha impartido cursos y talleres sobre muestreo y observación de aves, ha presentado 15 ponencias en Simposios y Congresos de Entomología, Ornitología y Zoología sobre diversos temas de aves. También ha participado en la elaboración de dos artículos de divulgación científica sobre ectoparásitos de aves en México; actualmente es miembro de la Sociedad Mexicana de Ornitología A.C.

Institución: Sociedad Mexicana de Ornitología (SMO) BUAP
Correo electrónico: roxy28338@hotmail.com
M.C. Hugo Rodolfo Molina Arroyo

Síntesis CV
Egresado de la Escuela de Biología de la BUAP, con Maestría en Ciencias Ambientales en la Fac. de Ciencias de la UNAM. Es Profesor-Investigador de tiempo completo del Laboratorio de Ecotoxicología de la Esc. de Biología de la BUAP. Con especialidad en la ecofisiología y ecotoxicología de organismos acuáticos de interés comercial. Conforma el cuerpo académico de Ecología y Ecotoxicofisiología ambiental. Pertenece al padrón de investigadores 2007-2011, así como al perfil PROMEP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: hmolina@siu.buap.mx

M.C. Aideé Montiel Martínez

Síntesis CV
Se graduó como bióloga en la Benemérita Universidad Autónoma de Puebla y como maestra en ciencias del mar y limnología por la Universidad Nacional Autónoma de México obteniendo el grado con Mención Honorífica. Ha trabajado con zooplancton epicontinental desde el 2001 en rubros de ecotoxicología, ecología, taxonomía. Ha sido ponente de congresos nacionales e internacionales, beca de CONACYT, COMECY, DGEP y PAPIIT. Recientemente distinguida con la portada del volumen en el que apareció un artículo suyo en Journal Plankton Research 2008, 30 (10).

Institución: Departamento de Ciencias Biológicas de la UNAM
Correo electrónico: amontiel_hi@yahoo.com.mx

Dra. Carolina Morán Raya

Síntesis CV
Bióloga egresada de la FES Zaragoza, UNAM, M. en C. UNAM; Doctorado en Neuroetología, Universidad Veracruzana. Realiza investigación básica en el área de neuroendocrinología, neuroanatomía de las gonadas y comportamiento animal. Tiene 8 publicaciones en revistas arbitradas y 6 capítulos de libro. Actualmente es profesor-investigador del Instituto de Ciencias de la BUAP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: moranraya@yahoo.com.mx

Dr. Miguel Ángel Morón Ríos

Síntesis CV

Institución: Instituto de Ecología A.C (INECOL)
Correo electrónico: miguel.moron@inecol.edu.mx

M.C. Cecilia Nava Ávila

Síntesis CV
Se encuentra cursando el Doctorado en el Instituto de Neuroetología de la Universidad Veracruzana, con Maestría en Ciencias por la Universidad de Yucatán, Licenciatura en la BUAP, con experiencia laboral en docencia a nivel maestría, licenciatura y educación no formal. Experiencia en proyectos de investigación comunitarios con relación al manejo de recursos naturales. Participación en congresos nacionales e internacionales.

Institución: Universidad Veracruzana (UV)
Correo electrónico: ncelina2002@yahoo.com.mx / cnaval@uv.mx
M.C. Dani Newcomb

Síntesis CV

Institución Secretaria del Medio Ambiente y Recursos Naturales (SEMAR NAT), Delegación Puebla
Correo electrónico dani.newcomb@puebla.semarnat.gob.mx

Dr. Benjamín Ortíz Espejel

Síntesis CV
Ingeniero Agrónomo por la Universidad Autónoma Metropolitana Xochimilco, Maestro en Antropología Social por el Centro de Investigaciones y Estudios Superiores en Antropología Social, Doctor en Ciencias por el Instituto de Ecología A.C. Ha realizado el entrenamiento internacional Leadership for Environmental and Development financiado por la Fundación Rockefeller y auspiciado por El Colegio de México A.C. Tiene 4 libros publicados sobre manejo y percepción de recursos naturales en México. Actualmente coordina el Programa Interdisciplinario en Medio Ambiente de la Universidad Iberoamericana, Puebla. Ha realizado investigaciones pioneras sobre la biodiversidad del suelo en potreros tropicales.

Institución Universidad Iberoamericana Puebla (UIA)
Correo electrónico benjamin.ortiz@iberopuebla.edu.mx

Lic. Ana María Palomares López

Síntesis CV
Licenciatura en Geología, Universidad Autónoma de Baja California Sur, Especialidad Geólogo Marino, Universidad Autónoma de Baja California Sur. Ing. Geólogo de apoyo en el Servicio Geológico Mexicano realizando actividades: cartográficas geológicas, geoquímicas y mineras. Actualmente es técnico superior en operaciones de campo en el Instituto Nacional de Estadística Geográfica e Informática (INEGI), participado en la elaboración, revisión y reproducción del material cartográfico, actualización de la carta topográfica y actualización de la cartografía geológica.

Institución Instituto Nacional de Estadística Geográfica e Informática (INEGI-CE Puebla)
Correo electrónico ana.palomares@inegi.org.mx

Dr. Ricardo Pérez Avilés

Síntesis CV
Doctor en Sociología, egresado de la UNAM; Profesor-Investigador de Tiempo Completo en la BUAP. Actualmente es Coordinador del Departamento Universitario para el Desarrollo Sustentable y funge como Consejero Propietario en el Instituto de Ciencias, así como miembro del Comité Editorial de la Revista Rumbo Rural del CEDRSSA de la H. Cámara de Diputados LXI Legislatura y vocal del comité ejecutivo Nacional de la AMER.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico cs000305@siu.buap.mx

Est. Biol. Yosaira Pérez Hernández

Síntesis CV
Estudiante de 10º cuatrimestre de la Escuela de Biología de la BUAP. Realizó una estancia de dos meses en Autlán de la Grana, Jalisco, trabajó con fauna silvestre, a cargo del Dr. Luis Ignacio Iñiguez Dávalos. Participó como asistente en el VIII y IX Congreso Nacional de Mastozoología.Actualmente realiza su servicio social en el Programa de Diagnóstico de Vida Silvestre del edo. de Puebla en UMAs de la mixteca poblana con la M.C. Ma. Concepción Lópes Yéllez.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico yosauria@hotmail.com
M.V.Z. Bernardino Pérez Rentería

Síntesis CV

Institución: Secretaría de Desarrollo Rural (SDR)
Correo electrónico: bernas_renteria@hotmail.com

M.C. Betzabeth Cecilia Pérez Torres

Síntesis CV
Obtuvo el grado de Maestra en Ciencias en la Benemérita Universidad Autónoma de Puebla. En los últimos años ha estado contratada por medio de proyectos como ayudante de investigación en el Departamento de Agroecología y Ambiente del Instituto de Ciencias, BUAP. Ha participado como colaborador en cinco proyectos de investigación, autor principal de tres capítulos de libro y coautor de cuatro más. Ha participado en cinco congresos internacionales y nacionales. Sus líneas de investigación versan sobre Entomología Agrícola.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: cs002445@siu.buap.mx

Biól. Adolfo Pérez Vargas

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: dofustofus@hotmail.com

Dra. Rocio Pérez y Terrón

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: rocperez@siu.buap.mx

Dra. Yarení Perroni Ventura

Síntesis CV
Bióloga egresada de la BUAP. Estudió el doctorado en el Instituto de Ecología (INECOL), Xalapa, en el Programa de Ecología y Manejo de Recursos Naturales. Fue becario postdoctoral del Consejo Técnico de la Investigación Científica (CTIC-UNAM) en el Centro de Investigaciones en Ecosistemas (CIECO), UNAM en el marco del proyecto “Mecanismos de disponibilidad de N y P del suelo en un desierto del norte de México”. Es miembro de la Sociedad Científica Mexicana de Ecología (SCME) y de la Ecological Society of America (ESA). Pertenece al Sistema Nacional de Investigadores (Nivel Candidato).

Institución: Universidad Veracruzana (UV)
Correo electrónico: yperroni@uv.mx

Ing. Quím. Mario Picazo Loyo

Síntesis CV
Ing. Químico egresado de la BUAP. Actualmente realiza estudios de Maestría en el Postgrado en Ciencias Ambientales del Instituto de Ciencias de la BUAP. Tiene experiencia laboral en Seguridad Industrial realizando auditorías de higiene y seguridad industrial. Ha evaluado análisis de riesgos de proyectos de PEMEX-Petroquímica y ha impartido pláticas de seguridad industrial a personal de la misma dependencia. Participó en el Programa de Prevención de Accidentes del Complejo Petroquímico Independencia.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: mario_picazo@yahoo.com.mx
Biól. Marco Antonio Pineda Maldonado

Síntesis CV
Desde 1992 se ha desempeñado principalmente en el área de la ilustración biológica como profesional independiente para diversas instituciones. Ha sido invitado a impartir conferencias, talleres y docencia con temas referentes a taxonomía, evolución, eras geológicas, historia, evolución y extinción de los dinosaurios e ilustración biológica. También ha participado en el desarrollo de proyectos de conservación y manejo de recursos naturales en la ciudad de Puebla, en coordinación con la Escuela de Biología de la BUAP. Cuenta con participaciones en la elaboración de libros de difusión con temas relacionados con los recursos naturales.

Institución: Bioimagen, A.C.
Correo electrónico: bioimagen@yahoo.com

Biól. José Carlos Pizaña Soto

Síntesis CV

Institución: Comisión Nacional de Áreas Naturales Protegidas (CONANP)
Correo electrónico: jcpizana@conanp.gob.mx / jcpizana.62@hotmail.com

M.C. Alma Delia Ramírez Guarneros

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: alma.ramirez@fcquim.buap.mx

Dr. Carlos Ramírez Herrera

Síntesis CV

Institución: Colegio de Postgraduados (COLPOS) Campus Montecillo
Correo electrónico: kmcran@colpos.mx

Pas. Berenice Ramírez Vera

Síntesis CV
Se encuentra colaborando con la M. en C. Concepción López Téllez y el M. en C. David Jiménez en la región de la Mixteca Poblana, en el monitoreo de fauna silvestre, y realizando estudios de Impacto Ambiental en diferentes zonas del estado de Puebla. Participa en la Escuela de Biología como apoyo en los talleres de Educación Ambiental, capacitación a alumnos en el muestreo y en el servicio social en la restauración y mantenimiento de animales disecados. Con la empresa Altepetl realizó el trabajo de “Agroindustrialización del árbol de Linaloé y Ecotecnias”. Ha impartido cursos de Taxidermia científica y exposición.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: bereramiver@hotmail.com
Biól. José Edmund Rivero Herrera

Síntesis CV
Egresado de la Escuela de Biología de la BUAP. Realizó su tesis sobre el conocimiento de la fauna que tienen los pobladores de la Mixteca Poblana. Tiene una presentación en un congreso nacional y el capítulo de un libro en prensa.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: ppriverah@hotmail.com

Dra. Maricela Rodríguez Acosta

Síntesis CV
Es Directora del Herbario y Jardín Botánico de la BUAP, de los cuales es fundadora. Realizó estudios de Maestría en la Facultad de Ciencias de la UNAM y el Doctorado en Ciencias de las Plantas en la Universidad de Southampton en Inglaterra. Sus proyectos van desde la formación y enriquecimiento de las Colecciones Biológicas y Botánica Económica, hasta investigación sobre bioenergía a partir de aceites esenciales y biomasa. Actualmente es colaboradora de Species Survival Commission de la IUCN (Unión para la Conservación de la Naturaleza), para los cuales, en colaboración con Fauna y Flora Internacional, ha evaluado las poblaciones de Quercus insignis y Q. hintonii para todo el país.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: macosta@siu.buap.mx

M.C. Gloria Elvira Rodríguez Gutiérrez

Síntesis CV
Egresada de la Escuela de Ingeniería Ambiental de la Universidad Popular Autónoma del Estado de Puebla (UPAEP), realizó la Maestría en el Posgrado de Ciencias Ambientales del Instituto de Ciencias de la BUAP, candidata a Doctora por la misma institución; miembro fundador y ex presidenta de la Red de Educadores Ambientales del Estado de Puebla. Catedrático de Ecología en bachillerato en la UPAEP, formó parte del grupo técnico para la elaboración de la Estrategia de Educación Ambiental del Estado de Puebla, actualmente es la Directora de “La Casa de las Hormigas”.

Institución: Agencia de Protección al Ambiente y Desarrollo Sustentable
Correo electrónico: gloriaerg@yahoo.com.mx

Est. Marisol Rodríguez Olvera

Síntesis CV
Estudiante del Colegio de Bachilleres del Estado de Puebla, plantel 23, Zacatlán Puebla (2000-2003) y actualmente de la Escuela de Biología de la BUAP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: chochos_0505@hotmail.com

Fís. Mat. Tobias Rodríguez Ramírez

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: tobro@hotmail.com

Dr. Octavio Rafael Rojas Soto

Síntesis CV
Doctor en Ciencias Biológicas. Desarrolló investigación sobre los patrones de distribución geográfica, ecológica y estacional de las aves mediante modelos predictivos de distribución potencial con el uso de algoritmos genéticos. Además, estudió los patrones filogeográficos de aves usando ADN mitocondrial. Ha realizado proyectos sobre inventarios de aves en diversas partes de México como: Hidalgo, Puebla, Querétaro, Guerrero, Baja California, Sonora, etc.

Institución: Instituto de Ecología A.C. (INECOL)
Correo electrónico: octavio.rojas@incol.edu.mx
C. Dr. Omar Romero Arenas

Síntesis CV
Es Lic. en Biología, egresado de la escuela de Biología de la Benemérita Universidad Autónoma de Puebla (2003). Actualmente es Investigador Docente de la Escuela de Ingeniería Agroforestal de la Benemérita Universidad Autónoma de Puebla, donde se ha desempeñado como Coordinador General de la Unidad regional Tetela a partir de enero de 2008. Candidato a Doctor en Ciencias dentro del Postgrado ofertado por el Colegio de Postgraduados “Campus Puebla” dentro del programa: Estrategias para el Desarrollo Agrícola Regional y en la especialidad de Biotecnología para la Conservación y uso Sustentable de los Recursos Naturales.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP), Campus Tetela
Correo electrónico: biol.ora@hotmail.com

M.C. Salvador Romero Castaños

Síntesis CV
Profesor Investigador en la Facultad de Medicina Veterinaria y Zootecnia, de la BUAP. Maestro en Ciencias en Recursos Naturales y Desarrollo Rural por el Colegio de la Frontera Sur. Tiene publicaciones sobre conservación, manejo y enfermedades de la fauna silvestre y experiencia laboral con manejo intensivo y extensivo de UMAs en México, salud pública y docencia.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: chavavetzoo@hotmail.com

Mat. Margarita Alicia Romero Centeno

Síntesis CV
Matemática egresada de la Facultad de Ciencias, UNAM y Demógrafa por el Colegio de Puebla A.C. Labora en el Instituto de Estadística y Geografía desde 1984 y actualmente es Directora Regional de diversas temáticas: demografía, uso del tiempo, violencia hacia las mujeres. Ha laborado en los departamentos de matemáticas de la Facultad de Ciencias, UNAM y de la UAM-Iztapalapa.

Institución: Instituto Nacional de Estadística y Geografía (INEGI)
Correo electrónico: margarita.romero@inegi.org.mx

Biól. Luis Enrique Romero Martínez

Síntesis CV

Institución: Secretaria del Medio Ambiente y Recursos Naturales del Estado de Puebla (SMRN)
Correo electrónico: azul_94@yahoo.com.mx

Lic. Freiry Rosas Rosas

Síntesis CV
Licenciado en Administración Pública y Ciencias Políticas, egresado de la Benemérita Universidad Autónoma de Puebla y coautor de los libros: “Cadenas Productivas y Acuicolas del Estado de Puebla” y “Paquetes Tecnológicos Agropecuario y Acuícola del Estado de Puebla”. Labora desde el 2006 en la Secretaria de Desarrollo Rural y actualmente se desempeña como Coordinador Técnico en dicha secretaria.

Institución: Secretaría de Desarrollo Rural (SDR)
Correo electrónico: risomate@hotmail.com
Lic. Juan Alejandro Ruíz Meza

Síntesis CV

Institución: Secretaría del Medio Ambiente y Recursos Naturales del Gobierno del Estado de Puebla (SMRN)
Correo electrónico: puebladea@hotmail.com

M.C. Verónica Ruíz Pérez

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: teder_vero@yahoo.com.mx / scentv@hotmail.com

M.C. José Adrián Saldaña Munive

Síntesis CV
Benemérita Universidad Autónoma de Puebla (BUAP), Instituto de Ciencias (ICUAP), Departamento de Investigación en Ciencias Agrícolas (DICA). Q.F.B., Facultad de Ciencias Químicas, BUAP, M. en C. (edadofología), Fac. de Ciencias, UNAM. Candidato a Doctor en Ciencias de la Tierra, Centro de Ciencias de la Atmósfera, UNAM. Profesor-Investigador, participa en el posgrado en Ciencias Ambientales y el Colegio de Ing. Ambiental. Actualmente desarrolla proyectos enfocados a la comprensión de la “Producción y emisión de gases de efecto invernadero por el cambio en el uso de suelo” y “Balance de emisiones y secuestro de carbono”, colaborador en el Centro de Ciencias de la Atmósfera (CCA) de la UNAM con proyectos financiados por CONACYT y FOMIX.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: cs000297@siu.buap.mx

Biól. Tania Saldaña Rivermar

Síntesis CV
Bióloga egresada de la Escuela de Biología de la Benemérita Universidad Autónoma de Puebla. Actualmente desarrolla proyectos para el conocimiento de la ecología de los reptiles, así como proyectos de divulgación ambiental a través del programa de radio “Tras las huellas de la Naturaleza”, que se transmite los días domingo de 3:30 a 10:00 h., por la estación de radio de la BUAP, y es miembro activo de la Sociedad Herpetológica Mexicana.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: tania salda@yahoo.com

Dra. Ma. Patricia Sánchez Alonso

Síntesis CV

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: mpgalon@siu.buap.mx
Ing. Roberto Carlos Sánchez Torres

Síntesis CV

Ing. Ambiental por la BUAP. Colaborador en los proyectos de investigación: "Agricultura urbana y transformaciones territoriales", en el Departamento Universitario para el Desarrollo Sustentable del ICUAP; "Inventario de contaminantes y sus indicadores regionales", de la Red PROMEP "Calidad Ambiental y Políticas Públicas"; "Análisis de potencial bioquímico de metano en muestras de RSU de los pozos muestreados en el relleno de tierra clausurado de Morelia Michoacán", estancia de investigación, Academia Mexicana de Ciencias; y "Elaboración de jabón en pasta a partir de aceite comestible", Fac. de Ing. Química, BUAP.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico rocasato@gmail.com

Dra. Sonia Emilia Silva Gómez

Síntesis CV

Doctora y Maestra en Ciencias en Estrategias para el Desarrollo Agrícola Regional por el Colegio de Postgraduados; Antropóloga Social por la Universidad Veracruzana. Docente del Posgrado en Ciencias Ambientales del Instituto de Ciencias (ICUAP) de la Fac. de Ing. Química también de la BUAP impartiendo: Derecho Ambiental, Derecho Ecológico y Comparado, Planificación Ambiental, Desarrollo Sustentable y otros optativos. Coautora de tres libros, de tres artículos en revistas indexadas y varios capítulos de libros. Responsable de proyectos financiados acerca de: marco jurídico de maíces criollos, manejo integral de recursos hídricos, transformaciones agropecuarias, evaluación rápida de fuentes de contaminación y políticas públicas y aprovechamiento sostenible del agua, entre otros. Autora de innumerables conferencias y memorias en reuniones internacionales, nacionales y regionales. Tutora y asesora de tesis de grado y de postgrado.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico sonia.silva@icubap.buap.mx

Pas. Susana Berenice Silva Juárez

Síntesis CV

Actualmente colabora con la M. en C. Concepción López Téllez y el M. en C. David Jiménez en la región de la Mixteca Poblana en monitoreo de fauna silvestre, también ha realizado estudios de impacto ambiental en diferentes zonas del estado de Puebla. Apoya en la Escuela de Biología con talleres de Educación Ambiental, capacitación a alumnos en el muestreo y servicios sociales con restauración y mantenimiento de animales disecados. Con la empresa de Alteperr realizó el trabajo de “Agroindustrialización del árbol de Linaloe y Ecotecnias”. Ha impartido cursos de Taxidermia científica y exposición.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico silvia_041083@hotmail.com

Dr. Oswaldo Rey Taboada Gaytán

Síntesis CV

Ingeniero Agrónomo Fitotecnista por la Universidad Autónoma Chapingo en 1991. Obtuvo el grado de Maestro en Ciencias en el Colegio de Postgraduados en el 2000 en la especialidad de Genética. Desarrolló su programa de estudios doctorales en la Universidad Iowa State University of Science and Technology y recibió el grado de Doctor en Filosofía con Especialidad en Mejoramiento Genético Vegetal en el 2007. Ha presentado trabajos en eventos científicos nacionales e internacionales y ha colaborado en diversos proyectos de investigación relacionados con la colecta, evaluación y selección de maíces criollos. Actualmente es Profesor-Investigador Asociado en el Colegio de Postgraduados, adscrito al Campus Puebla, con interés en el mejoramiento de las características composicionales del grano, en colectas de maíces criollos provenientes de diferentes regiones del estado de Puebla.

Institución Colegio de Postgraduados (COLPOS) Campus Puebla
Correo electrónico toswaldocolpos.mx
M.C. María del Carmen Tajonar Méndez

Síntesis CV

Institución Nueva Tierra Baldía (ONG)
Correo electrónico ptajonar@hotmail.com / http://nuevatierrabaldia.blogspot.com

Dr. José Víctor Tamariz Flores

Síntesis CV
Químico, Fac. de Ciencias UNAM, Doctor en Ciencias Ambientales, Profesor-Investigador en el Posgrado en Ciencias Ambientales y en la Fac. de Ingeniería Química. Actualmente desarrolla los proyectos de investigación: “Aprovechamiento integral de biosílidos en el municipio de Puebla”, “ Evaluación de la degradación de suelos de montaña de la Sierra Norte de Puebla”, y “ Evaluación del contenido de metales en el municipio de Puebla”. Ha presentado 35 ponencias en eventos internacionales, 57 en eventos nacionales. Ha dirigido 24 tesis de licenciatura y 6 de postgrado.

Institución Benemérita Universidad Autónoma de Puebla (BUAP), Departamento de Investigación en Ciencias Agrícolas (DICA)
Correo electrónico j.tamariz@siu.buap.mx

M.C. Refugio Armando Tapia Hernández

Síntesis CV
Es Químico Farmacobiólogo con Maestría en Microbiología. Colaborador de proyectos de investigación con apoyo de CONACYT, SEP, SEMARNAT y BUAP. Desarrolla líneas de investigación sobre biofertilización de cultivos agrícolas y biotecnología ambiental y la búsqueda de microorganismos asociados a cultivos de café, caña de azúcar, piña, agave, plantas arbóreas y jatropha, entre otras. Hace estudios de poblaciones microbianas en suelos contaminados con hidrocarburos, es asesor de estudiantes de licenciatura y de postgrado y ha presentado ponencias nacionales e internacionales; ha publicado siete artículos en revistas arbitradas.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico tapiarmando@yahoo.com.mx / artapia@yahoo.com.mx

M.C. Ana María Tapia Rojas

Síntesis CV
Licenciatura en Biología y Maestría en Ciencias Ambientales obtenidas en la BUAP. Actualmente labora como Profesora-Investigadora en el Depto. de Agroecología y Ambiente de la BUAP. Ha participado como ponente en Congresos nacionales e internacionales. Es colaboradora y responsable en proyectos de investigación financiados externamente. Autora de capítulos de libros, trabajos en extensas memorias y simposiums. Tiene participaciones como jurado de exámenes profesionales y asesora de alumnos de la Escuela de Biología de la BUAP en verano y servicio social. Pertenece al Padrón de Investigadores de la BUAP y al Programa del Mejoramiento del Profesorado (PROMEP) desde 2006 a la fecha.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico amtapia@siu.buap.mx

M.C. José Antonio Ticante Roldán

Síntesis CV
QF8. Escuela de Ciencias Químicas, BUAP. Maestra en Ciencias (Edafología), Facultad de Ciencias UNAM. Profesor-Investigador del Colegio de Ingeniería Ambiental de la Facultad de Ingeniería Química, de la Escuela de Eng. Agrohidráulica. En la actualidad desarrolla proyectos enfocados a la caracterización de la materia orgánica y de sus fracciones en el suelo y en otros ambientes, responsable y colaborador en proyectos de investigación con Profesores Investigadores del DICA, financiados por BUAP-CONACYT. Ha presentado 15 ponencias en congresos internacionales, 15 en eventos Nacionales, ha dirigido 10 tesis de licenciatura y 4 de maestría.

Institución Benemérita Universidad Autónoma de Puebla (BUAP), Departamento de Investigación en Ciencias Agrícolas (DICA)
Correo electrónico cs000301@siu.buap.mx
M.C. Erik Joaquín Torres Romero

Síntesis CV
Licenciado en Biología por la BUAP; Maestro en Ciencias por el Colegio de la Frontera Sur, San Cristóbal, Chiapas. Diplomado en desarrollo sustentable y gestión ambiental; ponente de diversos congresos nacionales; coordinador del proyecto del conjugar en la Reserva Ecológica el Edén; colaborador de varios proyectos de manifestaciones de impactos ambientales.

Institución El Colegio de la Frontera Sur (ECOSUR)
Correo electrónico ejtr23@hotmail.com

Lic. Edgardo Torres Trejo

Síntesis CV
Egresado de la Facultad de Ingeniería Civil, BUAP; Pasante de Maestría en Ciencias (Edafología), Facultad de Ciencias UNAM, Profesor-Investigador, Profesor de Posgrado en Ciencias Ambientales, Profesor de la Maestría en Ordenamiento del Territorio de la Facultad de Arquitectura y del Colegio de Ingeniería Civil. Actualmente desarrolla el proyecto “Estudio Edafológico de la Sierra Negra del Estado de Puebla (Clasificación de Suelos)”, colaborador con grupos de investigación del Departamento con proyectos financiados por la institución. Ha presentado 2 ponencias en congresos internacionales, 10 en eventos nacionales, ha dirigido 5 tesis de licenciatura.

Institución Benemérita Universidad Autónoma de Puebla (BUAP), Instituto de Ciencias (ICUAP), Departamento de Investigación en Ciencias Agrícolas (DICA)
Correo electrónico etorres23@hotmail.com

M.C. José Silvestre Toxtle Tlamani

Síntesis CV
MVZ egresado de la BUAP; MC. Colegio de Postgraduados Campus Puebla, con Especialidad en Estrategias para el Desarrollo Agropecuario Regional, Profesor-Investigador de la Escuela de Biología de la BUAP; imparte cursos de información geográfica y teledetección. Coordinador y colaborador en diversos proyectos conjuntamente con CONACYT, CONAFOR y la propia BUAP.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico sttoxtle@siu.buap.mx

Dr. Mario Valadez Ramírez

Síntesis CV
Ingeniero Agrónomo Fitotecnista, egresado de la Universidad de Guadalajara, obtuvo su Maestría en Ciencias en Genética, orientada a la producción de semillas por el Colegio de Postgraduados y el Doctorado en Producción y Fisiología de Cultivos, con énfasis en Ciencia de las Semillas por la Universidad Estatal de Iowa, EUA. Es Profesor-Investigador en el Campus Puebla del Colegio de Postgraduados, en donde participa en un equipo de expertos en la conservación, aprovechamiento y mejoramiento del maíz, especialmente de maíces nativos. Participa en los cursos de posgrado “Producción y Propagación Vegetal” y “Aprovechamiento de Recursos Fitogenéticos”. Actualmente participa en dos proyectos relacionados con el estudio, conservación y aprovechamiento de maíces.

Institución Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico mvaladez@colpos.mx / mvaladez_1999@yahoo.com

M.C. Miguel Ángel Valera Pérez

Síntesis CV
Químico Industrial, Facultad de Ciencias Químicas, BUAP; Maestro en Ciencias (Edafología), Facultad de Ciencias UNAM. Profesor del Posgrado en Ciencias Ambientales (ANIES Centro Sur) y del Colegio de Ingeniería Ambiental (PIQ BUAP), Profesor de los Cursos Internacionales de Edafología (UNAM, CSIC de España, Universidad Autónoma de Madrid) y de Geociencias Ambiental, Contaminación de Suelos (Universidad Autónoma de Madrid, UNESCO, AECID, UCLM). Actualmente desarrolla proyectos conjuntos con la UNAM, la Universidad Autónoma del Estado de Hidalgo, la Universidad Autónoma de Madrid y la Universidad de Texas A&M, con financiamientos de CONACYT.

Institución Benemérita Universidad Autónoma de Puebla (BUAP), Departamento de Investigación en Ciencias Agrícolas (DICA)
Correo electrónico mavape@siu.buap.mx
Dr. Samuel Vargas López
Síntesis CV
Ingeniero Agrónomo Zootecnista, con Maestría en Manejo de Pastizales y Doctorado en Producción Animal. Ha sido profesor de cursos sobre caracterización de sistemas de producción pecuaria, cadenas productivas pecuarias y ganadería agroecológica, gestión de sistemas ganaderos y desarrollo de sistemas agrosilvopastoriles a nivel licenciatura, maestría y doctorado. Cuenta con un total de 45 publicaciones entre revistas científicas, libros, capítulos de libros y artículos en memoria de congresos sobre caracterización de sistemas de producción animal y el uso de las especies animales en los agroecosistemas campesinos. Actualmente es Profesor-Investigador Adjunto en el Colegio de Postgraduados, Campus Puebla.

Institución Colegio de Postgraduados (COLPOS), Campus Puebla
Correo electrónico svargas@colpos.mx

Ing. Quím. Liz Angélica Vásquez Chávez
Síntesis CV
Ing. Químico candidata a Maestra en Ciencias Ambientales por la BUAP. Colaboradora de proyectos de investigación en Biofertilización de cultivos agrícolas y Biotecnología Ambiental, búsqueda de microorganismos asociados a cultivos de café y agave. Estudios de poblaciones microbianas en suelos contaminados con potencial biotecnológico. Ha participado en congresos nacionales e internacionales.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico lizamavazcha@yahoo.com.mx

Est. Biol. Emiliano Vázquez García
Síntesis CV
Estudiante de 10° cuatrimestre de la Escuela de Biología de la BUAP. Participó como autor de cartel en el Congreso ANCA 2009 (Asociación Nacional de Ciencias Ambientales). Realizó su Servicio Social con el Programa de Seguimiento de Egresados de la Escuela de Biología bajo la coordinación del M. en C. Hugo Rodolfo Molina Arroyo, en el Laboratorio de zoofisiología de la Esc de Biología. Actualmente está realizando una estancia con el M. en C. Hugo R. Molina.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico emil_vazquez91@hotmail.com

Dr. Carlos Hernán Vergara Briseño
Síntesis CV

Institución Universidad de las Américas, Puebla (UDLAP)
Correo electrónico carlos.h.vergara@udlap.mx

Ing. José Rafael Vicente Aguilera
Síntesis CV

Institución Instituto Nacional de Estadística, Geografía e Informática (INEGI)
Correo electrónico rafael.vicente@inegi.org.mx
Biól. Constantino Villar Salazar

Síntesis CV
Biólogo egresado de la Escuela de Biología de la BUAP. Actualmente desarrolla proyectos para el conocimiento de la ecología experimental en anfibios, proyectos de divulgación y educación ambiental a través del grupo de educación ambiental CALLUCOATL y la Escuela de Biología, BUAP, a través del programa de Radio “Tras las huellas de la Naturaleza”, que se transmite los domingos de 9:30 a 10:00 h, por la estación de radio de la BUAP, miembro activo y vocal del Centro de la Sociedad Herpetológica Mexicana.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: lguanaco5@hotmail.com

Dr. Oscar Agustín Villareal Espino Barros

Síntesis CV
Líder en la conservación, manejo y aprovechamiento racional y sostenido de UMAS (Unidad de Manejo Ambiental) cinegéticas en Puebla y asesor del tema en los estados de Oaxaca y Veracruz. Socio fundador y presidente de Mazamitzli, A.C.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: mazamitzli@yahoo.com

Dr. Luis Villareal Ruiz

Síntesis CV

Institución: Colegio de Postgraduados (Colpos), Campus Montecillo
Correo electrónico: luisvirus@hotmail.com / liusvirl@colpos.mx

Biól. Gemmamli Vital Guasso

Síntesis CV
Biólogo egresado de la Esc. de Biología de la BUAP. Con experiencia laboral en el área de desarrollo de proyectos productivos, divulgación e ciencia y tecnología, así como en la educación ambiental en diferentes instituciones como: Radio BUAP, la Universidad Tecnológica de Huejotzingo y el Instituto Tecnológico Superior de Tepeaca. Miembro activo de la Red Nacional de Actividades Juveniles en Ciencia y Tecnología, así como del Grupo de educación ambiental “Callucoatl”, con el que actualmente crea y desarrolla el Programa “Tras las Huellas de la Naturaleza” para Radio BUAP.

Institución: Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico: gemmamli_vital_guasso@hotmail.com
M.C. Stacey A. Weller

Síntesis CV

Institución Reserva de la Biosfera Tehuacán-Cuicatlán
Correo electrónico talktoweller@gmail.com

M.C. Gonzalo Yanes Gómez

Síntesis CV
Biólogo egresado de la Fac. de Ciencias de la UNAM, con Maestría en Ciencias Ambientales del Instituto de Ciencias de la BUAP. Fue Director de la Escuela de Biología de la BUAP de 2001 a 2004. Ha trabajado en ecología y fauna de anfibios y reptiles, miembro fundador de la colección herpetológica de la Escuela de Biología de la BUAP, participó en un capítulo del libro “Ofídios de Puebla”. Actualmente se dedica a la ecología de comunidades de escarabajos lamelicornios, especialmente lo relacionado con diversidad y uso como indicadores ecológicos; asimismo, es curador de la colección entomológica; también ha participado en proyectos de ecología de poblaciones y de comunidades de mamíferos, especialmente murciélagos y venados. Es profesor titular de las asignaturas de “Ecología General” y “Biogeografía”, y de optativas como Colecciones Científicas y Análisis de la Biodiversidad.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico ggonzale@siu.buap.mx / gonzalo_y@hotmail.com

Lic. Giselle Constanza Zamorano Martínez

Síntesis CV

Institución Parque Nacional Iztapopoca Zoquiapan, Comisión de Áreas Naturales Protegidas (CONANP)
Correo electrónico peaiztapopo@conanp.gob.mx

Dr. Maria Teresa Zayas Pérez

Síntesis CV

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico tzayasp@hotmail.com

Dr. Lino Zumaquero Ríos

Síntesis CV
Lic. en Biología de la Universidad de La Habana, especialista de primer grado Lab. Clínico, M. en C. en Parasitología, M. C. en Entomología Médica y Control de Vectores, Dr. en Ciencias Ambientales y de la Salud. 12 artículos en revistas indexadas, 14 artículos nacionales, ha asistido a 12 Congresos internacionales es miembro de la Soc. Cubana de Pediatría, de Parasitología, Mexicana de Parasitología, Latinoamericana de Parasitología, miembro del comité de expertos para estudio de la enfermedad de chagas, representante de 10 proyectos internacionales; autor de tres libros y ocho capítulos de libros, profesor titular C de tiempo completo de la BUAP.

Institución Benemérita Universidad Autónoma de Puebla (BUAP)
Correo electrónico linozuma@hotmail.com
LA BIOSGÉNERISIÓN EN PUEBLA: ESTUDIO DE ESTADO

Se terminó de imprimir en agosto de 2011 en Editorial Impresora Apolo, S. A. de C. V.
Centeno 162, Col. Granjas Esmeralda 09810, México, D.F.
Se imprimieron 2 500 ejemplares.